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Coupon
Collecting




Coupon collecting and server requests

The coupon collector’s problem in probability theory: ~ Servers

You buy boxes of cereal. requests
There are k different types of coupons ke servers
For each box you buy, you "collect" request to
a coupon of type i. Servert
How many coupons do you expect What is the expected number of
after buying n boxes of cereal? servers utilized after n requests?
s
\'(‘7 \ h"‘A -
i*

\-\
amazon *  B52% of Amazon profits
- ™ ** more profitable than Amazon’s
Web SerV|CeS North America commerce operations
source
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 3


http://www.zdnet.com/article/amazons-finds-its-profit-horse-in-aws-why-its-so-disruptive-to-its-old-guard/

Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.
* Requests independently go to server i with probability p;
* Let X = # servers that receive = 1 request.

What is E[X]?

<
&
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Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.
* Requests independently go to server i with probability p;
* Let X = # servers that receive = 1 request.

What is E[X]?

1. Define additional 2. Solve.
random variables.
Let: A; = event that server i ElX;] = P(A )=1-(1-p)"

receives = 1 request
X; = indicator for 4;

= iE[xi] = i(l - (1-p)"™
i=1

ZX

= 1

0\ AC hildeineed " dree Hap veen't
P(4;) = P(no requests to l) . ey cepes €V = o7
=1-(1-p)" Z“Z“—m =k=) (A=p) b~ g

) =1
NOte AL are dependent' Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford UI'llVCI'Slty 5



Coupon collecting problems: Hash tables

The coupon collector’s problem in probability theory: Hash Tables
You buy boxes of cereal. strings
There are k different types of coupons k buckets

hashed to

For each box you buy, you “collect”

a coupon of type i. bucket ¢
How many boxes do you expect What is the expected number of
to buy until you have one of strings to hash until each bucket

each coupon? has > 1 string?
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Hash Tables g

Consider a hash table with k buckets.

» Strings are equally likely to get hashed into any bucket (independently).
* Let Y = # strings to hash until each bucket = 1 string.

What is E[Y]?

1. Define additional
random variables.  How should we define Y; such that Y = 2 Y; ?
i

2
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E
Hash Tables ccome pevlect o

noehivg s
Consider a hash table with k buckets. £~ =

» Strings are equally likely to get hashed into any bucket (independently).

* Let Y = # strings to hash until each bucket = 1 string.
_ Xp = %X weeded nmbil fayek Yuohert aﬁea s&wén
What is E[Y]? Yl_«: Eano\y beymd Yo wndn\ cecnvdk bneleeds a,c%ag ey '
Yy £ Fhialc o2y A X, wbl A buclat teeco Q'\’VW7

1. Define additional  Let: Y; = # of trials needed to get success after i-th success

random variables. < Success: hash string to previously empty bucket

i — & bucltr
« If i non-empty buckets: P(success) = kk—l cnphbuc

ro=m =) (7

Equivalently, Y;~Geo (p = kk;l) E[Y;]

1k
p k—i
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Hash Tables g

Consider a hash table with k buckets.

» Strings are equally likely to get hashed into any bucket (independently).
* Let Y = # strings to hash until each bucket = 1 string.

What is E[Y]?

0. Solve. Y=Yy4+Y +-+Y, Z;mj L = I
E[Y] = E[Y,] + E[Y;] + -+ + E[Y—4] et ‘

T
—k+ X + X + +k—k[1+ ! + - +1] ﬁk
Tk k=1 k-2 1 Tk k-1 = O(klog k)
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Covariance




Statistics of sums of RVs

For any random variables X and Y,

ElX+Y]|=E[X] + E|Y]

Var(X +Y) = ?

But first, a new statistic!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 11



Spot the difference

Compare/contrast the following two distributions: Assume all points are

4 equally likely. .
com’ + . P(X=xY=v)=—
Q\”‘MMV y . . y SO X=xY=y) 5
\re 1 4 \ ©o ‘-.,' v ,;. 4 . ....\3,.{‘? &t cam fthvc'{' 3
_g' L Bl e ° e ° ; ...o.v..... ° —
eVt et e ol a-least yrughly
K DEEISOAE Fie 154 AR/ KLY U &?. g 0 .
2 | e Ve -;ﬁéﬁ.r‘ 2 - Yo o how q Wl
DLUTREERuA L T ronsg ¢
. :, ,.. ?.':":.""::...° S nlely 4 ¥ * imev\eaucl
O ] % © . X O S e o ‘ .
0 2 4 6 0 2 4 6
nece Lowsdabicdre dom 't caplure lﬂ\'W x avd y
’ ove

Both distributions have the same'E[X], E[Y], Var(X), and Var(Y) coupled !

Difference: how the two variables vary with each other.
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Covariance

The covariance of two variables X and Y is:

Cov(X,Y) =E[(X —E|[X]D(Y — E|Y])]
= E|XY] — E|X]E[Y]

Proof of second part (rewriting E[X], E[Y] as uy, uy to emphasize the fact they’'re each constants):

Cov(X, Y) = E[(X —E[XDY = E[YD] = E[(X = ux)(¥Y — piy)]

E[XY — uyX — uxY + pypy]
_ (linearity of
= E[XY] - ElpyX] — EluxY] + Eluxpy] expectation)
= E[XY] — uxpy — uxpy + pxpy (kx, py are
E[ constants)

XY] = pxpty = E[XY] = E[X]E[Y]

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 13



Covariance

The covariance of two variables X and Y is:

Cov(X,Y) =E[(X —E|[X]D(Y — E|Y])]
= E|XY] — E|X]E[Y]

Covariance measures how one random variable varies with a second.
Outside temperature and utility bills have a negative covariance.
Handedness and musical ability have near covariance.
Product demand and price have a positive covariance.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 14



Feel the covariance

Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
= E[XY] — E[X]E[Y]

Is the covariance positive, negative, or zero?

E[X] 2 o E[X]
A =N "-."'
I ‘. I P
ol IS N E[y] ™ by,
. A ' DY LN
o o7
X=x X =x
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Feel the covariance

Cov(X,Y) = E[(X - E[XD(Y — E[Y])]

= E[XY] — E[X]E[Y]

Is the covariance positive, negative, or zero?

AS K Inevealed, Co

dveg Y - ?09‘1'\1\/(’ coveylanGce.

E[X]

. REE

[ R

ol BPES E[Y]
\e
X =x
positive

no ohut M2 ‘par'\’-\-(wh

Tw iy Yy Charge!

ol R \weneoceg

a0 cpva\\oAMCe

E[X] 3.
asXx %ng- \
~ | Y3 0(—3_";‘/'? \
So A
:,' V\eﬁa{“ﬂ( Cowvﬁuan
- S
‘L, EfY]
YN . .
-7 s
X =x
negative
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Covarying humans

Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
= E[XY] — E[X]E[Y]

Weight (kg) | Height (in) W-H
64 57 3648
71 59 4189
53 49 2597
67 62 4154
55 51 2805
58 50 2900
77 55 4235
57 48 2736
56 42 2352
51 42 2142
76 61 4636
68 57 3876

E[W] E[H] E[WH]

= 62.75 =52.75

What is the covariance of weight W and
height H?

Cov(W,H) = E[WH] — E[W]E[H]

= 3355.83 — (62.75)(52.75)
(positive) = 45.77

45 55 65 75 85
Weight W (kilograms)

Covariance > O: one variable T, other variable T

= 3 35 5q88 Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 17



Properties of Covariance

Properties:
Cov(X,Y) = Cov(Y, X)
Var(X) = E[X?] — (E[X])? = E[XX] — E[X]E[X] = Cov(X, X)

Covariance of sums = sum of all pairwise covariances
COV(X1 + Xz, Yl + Yz) — COV(Xl, Yl) + COV(Xz, Yl) + COV(Xl, Yz) + COV(Xz, Yz)

Covariance under linear transformation: Cov(aX + b,Y) = aCov(X,Y
ve caV) Hut Vav*(axér\ff ="q% \/a(??&) )

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 18



Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.

1 ifX =20

Define Y =
| {O otherwise

What is the joint PMF of X and Y?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 19



Zero covariance does not imply independence

Let X take on values {—1,0,1} 1 Eg[x] = E[Y] =
with equal probability 1/3.
Define Y = {é t:X = 0
otherwise o E[XY] =
1 0 1
| 3. Cov(X,Y) =
. 0 |13 0 1/3|2/3 Marginal
PMF of
0 1/3 0 [1/3 v , ()
1/3 1/3 1/3 4. Are X and Y independent?
Marginal PMF
of X, py () 2~

@
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Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.
1 ifX=0

Define Y =
| {0 otherwise

-1 0] 1
O | 1/3 1/3
O 1/3 O
1/3 1/3 1/3

2/3 Marginal
PMF of
1/3 Y, py ()

Marginal PMF
of X, px(x)

Lisa Yan, Chris Piech, Mehra

n Sahami, and Jerry Cain, CS109, Winter 2024

E[X] = E[Y] =
()G 1E)=0  o(5)+1(5)=1/3

)+ 00 (5)+ a0

E[XY] = (—1.0)(
=0

Cov(X,Y) = E[XY] — E[X]E[Y]
=0-0(1/3)=0

does not imply
independence!

Are X andY independent?x
PY=0X=1)=1
+ P(Y=0)=2/3

Stanford University 21



Variance of
sums of RVs




Statistics of sums of RVs

For any random variables X and Y,
EIX+Y]|=E|X]|+E|Y]
Var(X +Y) = Var(X) + 2 - Cov(X,Y) + Var(Y)
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Variance of general sum of RVs

For any random variables X and Y,

Var(X+Y) =Var(X) + 2 -Cov(X,Y) + Var(Y)

Proof:
Var(X+Y) =Cov(X+Y,X+Y) Var(X) = Cov(X, X)
covariance of
= Cov(X, X) + Cov(X,Y)+ Cov(Y,X)+ Cov(Y,Y) all pairs
=Var(X) + 2 - Cov(X,Y) + Var(Y) Symmetry of covariance +

Cov(X,X) = Var(X)

Var(iz:Xi) ZVar(X)+ZZ z Cov (X;, X;)

=1 j=i+1

More generally:

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 24



Statistics of sums of RVs

For independent X and Y,
E|XY]| = E|X|E|Y]

Var(X +Y) = Var(X)+ Var(Y)

in, CS109, Winter 2024 Stanford University 25



Variance of sum of independent RVs

For independent X and Y,

Var(X +Y) = Var(X)+ Var(Y)

Proof:
Cov(X,Y) = E[XY] — E[X]E[Y] def. of covariance
— E[X]E[Y] - E[X]E[Y] X and Y are independent
=0 o ‘\V\WM
/V\,;Q'\Q ZiV;M '\(ﬂ'\e
b NOT bidirectional:
Var(X +Y) = Var(X) + 2 - Cov(X,Y) + Var(Y) Cov(X,Y) = 0 does NOT
= Var(X)+ Var(Y) imply independence of X
and Y!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 26



Proving Variance of the Binomial

X~Bin(n,p) var(X) = np(1 —p)

To simplify the algebra a bit,letg =1 —p,sop+g=1.

So:
n . B
E (XZ) = Z K (k)qu" & Definition of Binomial Distribution: p + g = 1
k20
S n—-1 n n-1
= Z k"( )qunik Factors of Binomial Coefficient: k( ) = n( )
k=0 Kl k k—1
- -1
=np Z k(" )P’("‘Q(""IH“‘” Change of limit: term is zero when k — 1 = 0
= k-1
- m
=np2(i+l)(j)p’q’"” putting j = k—1,m=n~—1
j=0
<« .[m « [m
= np il )Pa" + ( .)p’q”’" splitting sum up into two
(&)
< m—1 e < [(m e m m—1
= np| m| Pa" + Z L Factors of Binomial Coefficient: j( = ) = m( "
Jj=0 Sl j=o \J J J=1
¢ (m-1) (m=1)=(j=1) < (m m-j oo x "
=np| (n—1)p Z % Pq + Z . )Pa Change of limit: term is zero when j — 1 = 0
j=i NS 1 j=0
= "P((" - Dpp+™ " +(p+ 4)’") Binomial Theorem
=np((n—1p+1) asp+qg=1
=n*p* +np(1-p) by algebra
Let’s instead prove this using
Then:

() = £ (1) - €007 independence and variance!

= np(l —p)+ n:p2 - (np)2 Expectation of Binomial Distribution: E (X) = np

= np(1 - p) prOOfWiki.Org

as required.
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Proving Variance of the Binomial

X~Bin(n,p) var(X) = np(1 —p)

n
Let X = z X; Var(X) = Var(Z Xl->
i=1 i=1 l 1
n . v
Xj are independent,
Let X; = ith trial is heads = Z Var(X;) therefore variance of sum
X;~Ber(p) = = sum of variance

Var(X;) = p(1—p) n
— z p(1—p) Variance of Bernoulli
X; are independent t=1

by definition
(by ) =np(1 —p)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 2s




Correlation




Covarying humans

Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
= E[XY] — E[X]E[Y]

What is the covariance of

70 1
weight W and height H? 5 60 |
Cov(W,H) = E[WH] — E[W]E[H] =, |
= 3355.83 — (62.75)(52.75) %40
= 45./ 7/ (positive) T s 55 65 75 85
Weight W (kilograms)
What about weight (Ib) and =07
height (cm)? §16° 1 LS e
= 140 A S
Cov(2.20W, 2.54H) 200 | AR
= E[2.20W - 2.54H] — E[2.20W]E[2.54H] * o, o o | | |
= 18752.38 — (138.05)(133.99) 100 120 0 100 180
— 925506 (positive) 2.0+ 258 ¢ 4577 = 550 Weight W (Ib)
|, Covariance depends Sign of covariance (+/-) more
on units! meaningful than magnitude

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Stanford University 30



Correlation

The correlation of two variables X and Y is:

Cov(X,Y) 2 var
p(X; Y) — JXZ;V (X),
Ox Oy Y

Note: —1 < p(X,Y) <1

Correlation measures the linear relationship between X and Y

p(X,Y)=1 = Y = aX + b,where a = oy /oy
p(X,Y)=—-1 =Y =aX+ b,wherea = —oy/oy
p(X,Y)=0 = uncorrelated (absence of linear relationship)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 31



Correlation reps

What is the correlation coefficient p(X,Y)?

6
1.
.
4

2.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Stanford Uni.

OO w>

p(X,Y) =1
- pX,Y)=-1
. pX,Y)=0
. Other

———aey ——



Correlation reps

p(X,Y) =1
Cp(X,Y) = —1

What is the correlation coefficient p(X,Y)?

6
1.
.
4

B.p(X,Y) =-1
Y=—aX+0b
a>0
C.p(X,Y)=0

“uncorrelated”

2.

. pX,Y)=0
. Other

OO w >

A p(X,Y) =1

Y=aX+0b
a>0

C.p(X,Y)=0
Y = X?

X and Y can be nonlinearly related even if p(X,Y) = 0.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024
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Throwback to CS103: Conditional statements

Statement P = Q: Independence = No correlation
s : : (Iogically
Contrapositive =Q — —P: Correlation - Dependence
equivalent)

Inverse =P — —0: Dependence = Correlation X (not always)

Y = X2

p(X,Y)=0
Converse Q — P: No correlation - Independence X .ot aways)

“Correlation does not imply causation”

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 34



Extras




Expectation of product of independent RVs

If X and Y are
Independent, then

Proof: E[g(X)h(Y)]

E|XY]| = E[X]E|Y]
Elg(X)h(Y)] = E[g(X)]E[R(Y)]
= 2, 2 9Oy () forcontious proh elec
y
= 2 z gO)h(Y)px (x)py (¥) X and Y are independent
y X
= T d dent
zy: (h(y)py (y) zx: g(x)pX (x)) are coirsTaSnt ?np?nrlezraloor}ic]

— (2 g(x)px(x)> (Z h(y)py(y)> Summations separate
X Yy

:L\SE{ngh(ssXe)h] ﬁh[ahs(hyﬂ)a]wd Jerry Cain, CS109, Winter 2024 Stanford University 36



Variance of Sums of Variables

=1 j=i+1
X
\16(00 X’)O O\la( C;(s
Proof n - n n T A n
Var(Z Xl> = Cov (Z Xi,ZXl> = ZZ Cov(X;, X;)
i=1 i=1 i=1 i=1j=1

n n n

. Symmetry of covariance

- Z Var(X;) + Z Z Cov (Xi'X]') Cov(X, X) = Var(X)
i=1 i=1 j=1,j#i
n n n

= Z Var(X;) + 2 z Z Cov (Xi,Xj) Adjust summation bounds
i=1 i=1 j=i+1
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