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Independent discrete RVs

Recall the definition of independent P(EF) = P(E)P(F)
events E and F:
Two discrete random variables X and Y are independent if: 4 N
Hhee ae enuda ) juat e Eandt T
for all x, y: ¥ o
PX=x,Y=9y)=PX =x)P(Y =y) irgronl,
Different notati Pt Ty
| erega?:ea}éggg Pxy (%, y) = px(X)py () fPCﬁr%\Y’%)PU"D
Hie V¢ onmdler VS UM
» Intuitively: knowing value of X tells us nothing about # ¢t

) . . . VIICMV\ \ '\'
the distribution of Y (and vice versa) (M‘:M-,Mi:f\;%

* If two variables are not independent, they are called dependent. v
Yordam vayiables.
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Sum of independent Binomials

X~Bin(nq, p)
Y ~Bin(ny, p) X +Y ~Bin(ny + ny, p)
X,Y independent

Intuition:

Each trial in X and Y is independent and has same success probability p

Define Z =# successes in n; + n, independent trials, each with success
probability p. Z~Bin(n; + n,,p) and Z = X + Y as well

Holds in general case:

n n
: . If only it were
X;~Bin(n;, p) Z Xi NB'“(Z n;, p) always so simple
X; independentfori =1, ...,n =1 =1

\
?’w I\ see
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Coin flips

Flip a coin with probability p of heads a total of n + m times.

Let X = number of heads in first n flips. X~Bin(n, p)
Y = number of heads in next m flips. Y~Bin(m, p)
/Z = total number of heads in n + m flips.

1. Are X and Z independent?
2. Are X and Y independent?
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Coin flips

Flip a coin with probability p of heads a total of n + m times.

Let X = number of heads in first n flips. X~Bin(n, p)
Y = number of heads in next m flips. Y ~Bin(m, p)
/Z = total number of heads in n + m flips.

Are X and Z independent? X Counterexample: What if Z = 07
2507 ~hen K et be b
Are X and Y independent? as wett . Tnt's dopedoe,
{ # of mutually exclusive | (n) (m)
) (y

P(X=x,Y=y)=P ( first n flips have x heads ) outcomes in event

and next m flips have y heads P(each outcome)

= () a-p (7;1) p’(1—p)™™ =p* (L =p)" YA —p)"

This probability (found through
counting) is the product of the
marginal PMFs.

al\ Hvwse
2B Py =y T

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 6



Convolution:
Sum of
independent
Poisson RVs




Convolution: Sum of independent random variables

o oV /\w:;\”c AM«\V
we -
w PV

P(X+Y=n)=ZP(X=k,Y=n—k) et <
k

For any discrete random variables X and Y:

loﬂ‘k C\M{
pack

In particular, for independent discrete random variables X and Y

PX+Y=n)= PX=k)P(Y =n—k)
2

\ J
|

the convolution of py and py
~—,,

3‘(1’0\'\- Wl\ﬂ( I, <
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Insight into convolution

For independent discrete random variables X and Y

PX+Y=n)= 2 PX =k)P(Y =n—k) the convolution
T of px and py

Suppose X and Y are independent, both with support {0, 1, ..., n, ... }:

X
0 1 2 +1
0 £ V:eventwhere X +Y =n
v Each event has probakbility:
vav\cQ
n—2 v P(X:k’yzn_k)b—l—om.

=PX=k)P(Y=n—-k)
(because X, Y are independent)
no |V P(X+Y =n) =sum of
ntl mutually exclusive events
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Sum of 2 dice rolls o
ial

‘\i\")* ‘X\"‘}‘V% «°1
/W\iq %lib/:\MvtLé’:Zw;\emaﬂ UM “ ) :. -
Ay
N W
6/36 Z
__5/36 % % v The distribution of a sum of
257 6 rolls -
4/36 R % 2 dice rolls is a convolution
: %% %%
>~ 3/36 /?é?ééff of 2 PMFs.
2%%%%7%7
s 2/36 297 %77 7% .
2 %2%2%%% %% 7 Example:
N 36 w4 @7 550G, P(X+Y =4)=
36 272877 %%%% % ( )
0 7/ éééﬁéééé P(X=1)P(Y=3)
2 3 4 5 6 8 9 101112 +PX=2)P(Y =2)

St
_|_
~
|l
=
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Sum of 10 dice rolls (fun preview)

The distribution of a sum of
10 dice rolls is a convolution
| 10 PMFs.
__________ ||I||||| |‘|IIII|.--------- L ks ki d N | 55
10 20 30 40 50 60 OOKS KINnda Normal...7 ¢«

(more on this in a few weeks)
Xl +X2 + "‘+X10 =n
Mg sum's AAS’«\’VHOMM ]CVA“LI Ho weuld
o’b’w_l\;\f vt ludime \
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Sum of independent Poissons

X~Poi(4,),Y~Poi(4,) :
X(,)II/ inldependerllt i X+Y NPOI(Al + AZ)

Proof (just for reference):

_ _ _ — o X and Y independent,
P(X+Y =n) = Z P(X = K)P(Y = n — k) X and ¥ inc
n k n—k n k yn—k
— z oM )l_e A 472\ A2 —(A1+42) z 1 A2 PMF of Poisson RVs
k! (n — k)' k!(n—k)!

k=0 )

e —(A1+23) — e~ (A1+13) , Binomial Thenorem:
= z k' (n k)' /1 /1 n' (/11 + Az) (a + b)n — z (Z) akbn—k

‘ \ J k=0
/W\u \J/\y)b’bb{ P Lisa Yan, Chris Piech, Mehran Sahami, (!:J)OyIC(A 109, Wi tgf'2024
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General sum of independent Poissons

Holds in general case:

n n
Xl""POi(/li) Z . z

X; independent fori =1, ...,n X;~Poi( ) 4;)
=1 i=1
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Sum of independent Poissons

X~Poi(1y), Y~Poi(1;) X +Y ~Poi(A + 1,)

X,Y independent

n servers with independent number of requests/minute
Server i’s requests each minute can be modeled as X;~Poi(4;)

What is the probability that the total number of web requests received at all

servers inthe next minute exceeds 107
L€+‘ >\:‘Z>\\ ?(X‘?\D') = l—P(XA‘DD )

=\ ) ke
= \ —_ Zepf\__%_, = | —eh
x=0o k) =0

D>\\L

—_—

Al

J\/l
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Exercises




Independent questions

Let X~Bin(30,0.01) and Y~Bin(50,0.02) be independent RVs.
How do we compute P(X + Y = 2) using a Poisson approximation?
How do we compute P(X + Y = 2) exactly?

Let N = # of requests to a web server per day. Suppose N~Poi(1).
Each request independently comes from a human (prob. p), or bot (1 — p).
Let X be # of human requests/day, and Y be # of bot requests/day.

Are X and Y independent? What are their marginal PMFs?
Stanford Uni. J __
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1. Approximating the sum of independent Binomial RVs

Let X~Bin(30,0.01) and Y~Bin(50,0.02) be independent RVs.

Mpmciwale X wita A~ Poy (03) Appricmte X with B poy (110)
* How do we compute P(X + Y = 2) using a Poisson approximation?
P(x+Y=2) =% P(A+B=2) e >
ek S= A+B o p(s=2) =€ "2 e
QNPD‘]()I%D \.
Nrle Hst X+Y jond Juet
* How do we compute P(X +Y = 2) exactly? a Bwwwmtial wlen X and
ove. Thely p parovedos
P(X‘l‘Y_Z)_ZP(X K)P(Y =2—k) heed o be e canme,
=0 p\refH\q < vt 'n—ul ae hH-\.
N

2
= > (3))001%(0.99%07* (,>° ) 0.022*0.98%0-C"B ~ 0.2327
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Web server requests

Let N = # of requests to a web server per day. Suppose N~Poi(1).

Each request independently comes from a human (prob. p), or bot (1 — p). el
Let X be # of human requests/day, and Y be # of bot requests/day. Jewm high!'d"

V ¥y 0 .
Are X and Y independent? What are their marginal PMFs? o

PX=xY=y)= PX=xY=y|IN=x+y)P(N=x+7y) Law of Total
+P(X =x,Y =y|N #x+y)P(N # x + y) Probability

= PX=xI[N=x+y)P(Y=y|X=x,N=x+y)P(N=x+17y) Chain Rule
+y . . .

_ X+ Y\ %1 _ o\ . ) A* Given N = x + y indep. trials,

o ( x )p (1 P) 1 € (x_|_y)! X|N = x + y~Bin(x + y,p)

L)l Gp)* (A0 - p) _ S Oy (A0 - p))’

- I 1 | | |
Xy W = y: Yes, X and Y are

= PX =x)P(Y =y) where X~Poi(1p), Y ~Poi(A(1 — p)) independent!
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Independence of multiple random variables

Recall independence of forr=1,.. n:
nevents £, E,, ..., Ey: for every subset E4, E,, ..., E,:
P(Ey, Ey, ..., Er) = P(E1)P(E;) - P(E;)

We have independence of n discrete random variables X4, X5, ..., X, if
for all x{, x5, ..., Xpy:

n
P(Xl — xl,XZ — xZ, ""XTl — xn) — HP(Xl — xl)
i=1
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Independence is symmetric

If X and Y are independent random variables, then Captain 2
X isindependent of Y, and Y is independent of X Obvious

‘.l
Let N be the number of times you roll 2 dice repeatedly until a 4 is rolled
(the player wins), or a 7 is rolled (the player loses).

Let X be the value (4 or 7) of the final throw.

Is N independent of X7 P(N =n|X=7)=P(N =n)?
P(N =n|X =4) = P(N = n)?

Is X independent of N? P(X =4|N =n) =P(X = 4)? (yes, easier
PX=7|IN=n)=PX =7)? to intuit)

Redux: Independence is not always intuitive, but it is always symmetric.

. - A W e \
@A IwLependone: 1 vvx‘:+3_\%ﬁ( H—C&vj%lw’ )
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Expectation of
Common RVs




Linearity of Expectation: Important

Expectation is a linear mathematical operation. If X = Y/-, X; :

E[X] = E ZXi — iE[Xi]
] =1

Even if you don’t know the distribution of X (e.g., because the joint
distribution of (X4, ..., X,,) is unknown), you can still compute
expectation of X.

Most common use cases:

Problem-solving key: - $ « E[X;] easy to calculate
Define X; such that zxi « Sum of dependent RVs
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Expectations of common RVs: Binomial

X~BIin (Tl, p) E[X] = np #.of success_gs in n independent trials
with probability of success p

Recall: Bin(1, p) = Ber(p)

n
X = le
=1

Let X; = ith trial is heads

X;~Ber(p),E[X;]=p E[X]=E

=§:E[Xi] =Zn:29=np

=1 =1

n
2.
i=1
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Expectations of common RVs: Negative Binomial

_ - . . . .
Y~NegB|n (T', p) E[Y] _r # of mdependenft trials with probability
p of success p until r successes
e precented Aine wrthot pm@ - \IUW W

Recall: NegBin(1, p) = Geo(p) pewe 1+,

) Y,‘ Crwnts He nom ko
1. How should we define Y;? o Aviale WeedeA b

?
—_ i viduey 1 Suceecr
Y - Z Yl _ | cHev (i-1YHr shetecss
i=1 2. How many terms are in our summation?
Y, Fimee we n-eeA

V" Suceecgces,
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Expectations of common RVs: Negative Binomial

Y~|\|egB|n (7‘, p) E[Y] = - # of mdependenjc trials with probability
p of success p until r successes

Recall: NegBin(1, p) = Geo(p)

r
Y=ZYi
=1

Let Y; = # trials to get ith success (after
(i — 1)th success)

Yi~Geo(p), E[Y:] =

<
<

o |-
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