Table of Contents

2 Sums of Binomials
7 Convolutions and Poisson 15 Exercises
21 Expectation of Common RVs

12: Independent RVs

Jerry Cain

February 5, 2024

Lecture Discussion on Ed

Sums of independent Binomial RVs

Independent discrete RVs

Recall the definition of independent

$$
P(E F)=P(E) P(F)
$$

Two discrete random variables X and Y are independent if:

Different notation, same idea:

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)
$$

- Intuitively: knowing value of X tells us nothing about of cmeltimal the distribution of Y (and vice versa)

$$
\begin{aligned}
& \text { in geveral, } \\
& \begin{array}{l}
P(X=x, Y=y) \\
=P(X=x) Y=y) P(Y=y) \\
\text { this ic another version }
\end{array}
\end{aligned}
$$

- If two variables are not independent, they are called dependent. tho

Sum of independent Binomials

$$
\begin{aligned}
& X \sim \operatorname{Bin}\left(n_{1}, p\right) \\
& Y \sim \operatorname{Bin}\left(n_{2}, p\right)
\end{aligned}
$$

$X+Y \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$

X, Y independent
Intuition:

- Each trial in X and Y is independent and has same success probability p
- Define $Z=\#$ successes in $n_{1}+n_{2}$ independent trials, each with success probability $p . Z \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$ and $Z=X+Y$ as well

Holds in general case:
$X_{i} \sim \operatorname{Bin}\left(n_{i}, p\right)$
X_{i} independent for $i=1, \ldots, n$
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}\left(\sum_{i=1}^{n} n_{i}, p\right)
$$

Coin flips

Flip a coin with probability p of heads a total of $n+m$ times.
Let $\quad X=$ number of heads in first n flips. $X \sim \operatorname{Bin}(n, p)$
$Y=$ number of heads in next m flips. $Y \sim \operatorname{Bin}(m, p)$
$Z=$ total number of heads in $n+m$ flips.

1. Are X and Z independent?
2. Are X and Y independent?

Coin flips

Flip a coin with probability p of heads a total of $n+m$ times.
Let $\quad X=$ number of heads in first n flips. $X \sim \operatorname{Bin}(n, p)$
$Y=$ number of heads in next m flips. $Y \sim \operatorname{Bin}(m, p)$
$Z=$ total number of heads in $n+m$ flips.

1. Are X and Z independent?

Counterexample: What if $Z=0$?
2. Are X and Y independent? ∇
$P(X=x, Y=y)=P\binom{$ first n flips have x heads }{ and next m flips have y heads }
$=\binom{n}{x} p^{x}(1-p)^{n-x}\binom{m}{y} p^{y}(1-p)^{m-y}$
\Rightarrow all things $X(X=x) P(Y=y)$ all things Y
\# of mutually exclusive $:\binom{n}{x}\binom{m}{y}$
\quad outcomes in event
$P($ each outcome $)$
$\quad=p^{x}(1-p)^{n-x} p^{y}(1-p)^{m-y}$

This probability (found through counting) is the product of the marginal PMFs.

Convolution: Sum of independent Poisson RVs

Convolution: Sum of independent random variables

For any discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k, Y=n-k)^{3^{n e}} \begin{gathered}
\text { with the exampl} \\
\text { last side } \\
\text { docks. }
\end{gathered}
$$

In particular, for independent discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{\text {the convolution }}^{\sum_{k} P(X=k) P(Y=n-k)} \text { of } p_{X} \text { and } p_{Y}
$$

Insight into convolution

For independent discrete random variables X and Y :

$$
P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k)
$$ of p_{X} and p_{Y}

Suppose X and Y are independent, both with support $\{0,1, \ldots, n, \ldots\}$:

		X						
		0	1	2	...	n	$n+1$...
	0					\checkmark		
	.				\ldots			
	$n-2$			\checkmark				
Y	$n-1$		\checkmark					
	n	\checkmark						
	$n+1$							
	...							

- $\sqrt{ }$: event where $X+Y=n$
- Each event has probability:

$$
P(X=k, Y=n-k) \begin{aligned}
& \text { k valic } \\
& 0 \text { to } n
\end{aligned}
$$

$$
=P(X=k) P(Y=n-k)
$$

(because X, Y are independent)

- $P(X+Y=n)=$ sum of mutually exclusive events

Sum of 2 dice rolls

The distribution of a sum of $\underline{2}$ dice rolls is a convolution of $\underline{2}$ PMFs.

Example:

$$
\begin{aligned}
& P(X+Y=4)= \\
& \quad P(X=1) P(Y=3) \\
& \quad+P(X=2) P(Y=2) \\
& \quad+P(X=3) P(Y=1)
\end{aligned}
$$

Sum of to dice rolls (fun preview)

Sum of independent Poissons

$$
\begin{gathered}
X \sim \operatorname{Poi}\left(\lambda_{1}\right), Y \sim \operatorname{Poi}\left(\lambda_{2}\right) \\
X, Y \text { independent }
\end{gathered}
$$

$X+Y \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)$

Proof (just for reference):

$$
\begin{aligned}
& P(X+Y=n)=\sum_{k} P(X=k) P(Y=n-k) \\
& \quad=\sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!}=e^{-\left(\lambda_{1}+\lambda_{2}\right)} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k!(n-k)!} \\
& \quad=\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k}=\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!}\left(\lambda_{1}+\lambda_{2}\right)^{n} \\
& \text { multiply bu } \frac{n!}{n!}
\end{aligned}
$$

X and Y independent, convolution

PMF of Poisson RVs

Binomial Theorem:
$(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$
Stanford University 12

General sum of independent Poissons

Holds in general case:

$$
\begin{array}{|c}
X_{i} \sim \operatorname{Poi}\left(\lambda_{i}\right) \\
X_{i} \text { independent for } i=1, \ldots, n
\end{array} \quad \sum_{i=1}^{n} X_{i} \sim \operatorname{Poi}\left(\sum_{i=1}^{n} \lambda_{i}\right)
$$

Sum of independent Poissons

$$
\begin{gathered}
X \sim \operatorname{Poi}\left(\lambda_{1}\right), Y \sim \operatorname{Poi}\left(\lambda_{2}\right) \\
X, Y \text { independent }
\end{gathered}
$$

$X+Y \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)$

- n servers with independent number of requests/minute
- Server i 's requests each minute can be modeled as $X_{i} \sim \operatorname{Poi}\left(\lambda_{i}\right)$

What is the probability that the total number of web requests received at all servers in the next minute exceeds $10 ?$

$$
\text { Let } \begin{aligned}
\lambda=\sum_{i=1} \lambda_{i} \quad P(x>10) & =1-P(x \leq 10) \\
& =1-\sum_{k=0}^{10} e^{-\lambda} \frac{\lambda^{k}}{k!}=1-e^{-\lambda} \sum_{k=0}^{10} \frac{\lambda^{k}}{k!}
\end{aligned}
$$

Exercises

Independent questions

1. Let $X \sim \operatorname{Bin}(30,0.01)$ and $Y \sim \operatorname{Bin}(50,0.02)$ be independent RVs.

- How do we compute $P(X+Y=2)$ using a Poisson approximation?
- How do we compute $P(X+Y=2)$ exactly?

2. Let $N=\#$ of requests to a web server per day. Suppose $N \sim \operatorname{Poi}(\lambda)$.

- Each request independently comes from a human (prob. p), or bot ($1-p$).
- Let X be \# of human requests/day, and Y be \# of bot requests/day. Are X and Y independent? What are their marginal PMFs?

1. Approximating the sum of independent Binomial RVs

Let $X \sim \operatorname{Bin}(30,0.01)$ and $Y \sim \operatorname{Bin}(50,0.02)$ be independent RVs. Appmeimate X with $A \sim P_{01}(0,3) \quad$ Approximate Y with $B \sim P_{01}(1,0)$

- How do we compute $P(X+Y=2)$ using a Poisson approximation?

$$
\begin{array}{rl}
P(X+Y=2) & \approx P(A+B=2) \\
\text { let } S & S A+B \\
& S \sim P_{0 i}(1.3)
\end{array} \longrightarrow P(S=2)=e^{-1.3} \frac{1.3^{2}}{2!}=.2302
$$

$$
\text { Note that } X+Y \text { isn't just }
$$

- How do we compute $P(X+Y=2)$ exactly?
$P(X+Y=2)=\sum_{k=0}^{2} P(X=k) P(Y=2-k)$
a Binmial when X and Y are. Their p parameter need to be the same. but then are not!

$$
=\sum_{k=0}^{2}\binom{30}{k} 0.01^{k(0.99)^{30-k}\binom{50}{2-k} 0.02^{2-k} 0.98^{50-(2-k)} \approx 0.2327}
$$

2. Web server requests

Let $N=\#$ of requests to a web server per day. Suppose $N \sim \operatorname{Poi}(\lambda)$.

- Each request independently comes from a human (prob. p), or bot ($1-p$).
- Let X be \# of human requests/day, and Y be \# of bot requests/day. tevm highlighted Are X and Y independent? What are their marginal PMFs? in fellm ico.

$$
\begin{aligned}
& P(X=x, Y=y)=\quad \begin{array}{l}
P(X=x, Y=y \mid N=x+y) P(N=x+y) \\
+P(X=x, Y=y \mid N \neq x+y) P(N \neq x+y)
\end{array} \\
& \quad=P(X=x \mid N=x+y) P(Y=y \mid X=x, N=x+y) P(N=x+y)
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{x+y}{x} p^{x}(1-p)^{y} \cdot 1 \quad \cdot e^{-\lambda} \frac{\lambda^{x+y}}{(x+y)!} \quad \begin{array}{l}
\text { Given } N=x+y \text { indep. trials, } \\
X \mid N=x+y \sim \operatorname{Bin}(x+y, p)
\end{array} \\
& =\frac{(x+y)!}{x!y!} e^{-\lambda} \frac{(\lambda p)^{x}(\lambda(1-p))^{y}}{(x+y)!}=e^{-\lambda p} \frac{(\lambda p)^{x}}{x!} \cdot e^{-\lambda(1-p)} \frac{(\lambda(1-p))^{y}}{y!} \\
& =P(X=x) P(Y=y) \quad \text { where } X \sim \operatorname{Poi}(\lambda p), Y \sim \operatorname{Poi}(\lambda(1-p))
\end{aligned}
$$

Independence of multiple random variables

Recall independence of n events $E_{1}, E_{2}, \ldots, E_{n}$:

```
for r=1,\ldots,n:
```

 for every subset \(E_{1}, E_{2}, \ldots, E_{r}\) :
 $$
P\left(E_{1}, E_{2}, \ldots, E_{r}\right)=P\left(E_{1}\right) P\left(E_{2}\right) \cdots P\left(E_{r}\right)
$$

We have independence of n discrete random variables $X_{1}, X_{2}, \ldots, X_{n}$ if for all $x_{1}, x_{2}, \ldots, x_{n}$:

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i}\right)
$$

Independence is symmetric

If X and Y are independent random variables, then X is independent of Y, and Y is independent of X

Let N be the number of times you roll 2 dice repeatedly until a 4 is rolled (the player wins), or a 7 is rolled (the player loses).
Let X be the value (4 or 7) of the final throw.

- Is N independent of X ? $\quad P(N=n \mid X=7)=P(N=n)$?

$$
P(N=n \mid X=4)=P(N=n) ?
$$

- Is X independent of N ? $\quad P(X=4 \mid N=n)=P(X=4)$? (yes, easier

$$
\left.P(X=7 \mid N=n)=P(X=7) ? \int \text { to intuit }\right)
$$

Redux: Independence is not always intuitive, but it is always symmetric.

Expectation of Common RVs

Linearity of Expectation: Important

Expectation is a linear mathematical operation. If $X=\sum_{i=1}^{n} X_{i}$:

$$
E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

- Even if you don't know the distribution of X (e.g., because the joint distribution of (X_{1}, \ldots, X_{n}) is unknown), you can still compute expectation of X.
- Problem-solving key: Define X_{i} such that

$$
X=\sum_{i=1}^{n} X_{i}
$$

Most common use cases:

- $E\left[X_{i}\right]$ easy to calculate
- Sum of dependent RVs

Expectations of common RVs: Binomial

$X \sim \operatorname{Bin}(n, p) \quad E[X]=n p$

Recall: $\operatorname{Bin}(1, p)=\operatorname{Ber}(p)$

$$
X=\sum_{i=1}^{n} X_{i}
$$

Let $X_{i}=i$ th trial is heads

$$
X_{i} \sim \operatorname{Ber}(p), E\left[X_{i}\right]=p
$$

\# of successes in n independent trials with probability of success p

Expectations of common RVs: Negative Binomial

$$
Y \sim \operatorname{NegBin}(r, p) \quad E[Y]=\frac{r}{p}
$$

Recall: $\operatorname{NegBin}(1, p)=\operatorname{Geo}(p)$

\# of independent trials with probability of success p until r successes

$$
Y=\sum_{i=1}^{?} Y_{i}
$$

$$
\begin{gathered}
r_{1} \text { since we need } \\
r \text { successes. }
\end{gathered}
$$

Expectations of common RVs: Negative Binomial

$Y \sim \operatorname{NegBin}(r, p) \quad E[Y]=\frac{r}{p}$
Recall: $\operatorname{NegBin}(1, p)=\operatorname{Geo}(p)$

$$
Y=\sum_{i=1}^{r} Y_{i}
$$

Let $Y_{i}=\#$ trials to get i th success (after

$$
\begin{array}{r}
(i-1) \text { th success) } \\
Y_{i} \sim \operatorname{Geo}(p), E\left[Y_{i}\right]=\frac{1}{p}
\end{array}
$$

\# of independent trials with probability of success p until r successes

$$
E[Y]=E\left[\sum_{i=1}^{r} Y_{i}\right]=\sum_{i=1}^{r} E\left[Y_{i}\right]=\sum_{i=1}^{r} \frac{1}{p}=\frac{r}{p}
$$

