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Independent	discrete	RVs
Recall the definition of independent
events 𝐸 and 𝐹:

Two discrete random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

𝑝!,# 𝑥, 𝑦 = 𝑝! 𝑥 𝑝# 𝑦

• Intuitively: knowing value of 𝑋 tells us nothing about
   the distribution of 𝑌 (and vice versa)

• If two variables are not independent, they are called dependent.
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for all 𝑥, 𝑦:

Different notation,
same idea:

𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃 𝐹
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Sum	of	independent	Binomials

Intuition:
• Each trial in 𝑋 and 𝑌 is independent and has same success probability 𝑝
• Define 𝑍 =# successes in 𝑛! + 𝑛" independent trials, each with success 

probability 𝑝. 𝑍~Bin 𝑛! + 𝑛", 𝑝  and 𝑍 = 𝑋 + 𝑌	as well
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𝑋~Bin(𝑛-, 𝑝)
𝑌~Bin(𝑛., 𝑝) 𝑋 + 𝑌	~Bin(𝑛- + 𝑛., 𝑝)

If only it were 
always so simple

𝑋, 𝑌 independent

𝑋#~Bin(𝑛# , 𝑝)
𝑋# independent for 𝑖 = 1,… , 𝑛

+
$%&

'

𝑋$ ~Bin(+
$%&

'

𝑛$ , 𝑝)
Holds in general case:
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Coin	flips
Flip a coin with probability 𝑝 of heads a total of 𝑛 + 𝑚 times.
Let  𝑋 = number of heads in first 𝑛 flips. 𝑋~Bin(𝑛, 𝑝) 

  𝑌 = number of heads in next 𝑚 flips. 𝑌~Bin 𝑚, 𝑝
  𝑍 = total number of heads in 𝑛 + 𝑚 flips.
1. Are 𝑋 and 𝑍 independent?
2. Are 𝑋 and 𝑌 independent?
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Coin	flips
Flip a coin with probability 𝑝 of heads a total of 𝑛 + 𝑚 times.
Let 𝑋 = number of heads in first 𝑛 flips. 𝑋~Bin(𝑛, 𝑝) 
 𝑌 = number of heads in next 𝑚 flips. 𝑌~Bin(𝑚, 𝑝)
 𝑍 = total number of heads in 𝑛 + 𝑚 flips.
1. Are 𝑋 and 𝑍 independent?
2. Are 𝑋 and 𝑌 independent?
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❌

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 first 𝑛 flips have 𝑥 heads
and next 𝑚 flips have 𝑦 heads 

# of mutually exclusive
outcomes in event ∶ 𝑛

𝑥
𝑚
𝑦

𝑃 each outcome 	
= 𝑝! 1 − 𝑝 "#!𝑝$ 1 − 𝑝 %#$

= 𝑛
𝑥 𝑝$ 1 − 𝑝 %&$ 𝑚

𝑦 𝑝' 1 − 𝑝 (&'

= 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

✅

Counterexample: What if 𝑍 = 0?

This probability (found through 
counting) is the product of the 
marginal PMFs.



Convolution:	
Sum	of	
independent	
Poisson	RVs
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Convolution:	Sum	of	independent	random	variables
For any discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =+
3

𝑃 𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘

In particular, for independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 =+
3

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘
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the convolution of 𝑝) and 𝑝*
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the convolution 
of 𝑝) and 𝑝*

Insight	into	convolution
For independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 ='
!

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

 Suppose 𝑋 and 𝑌 are independent, both with support 0, 1, … , 𝑛, … :

9

𝑋 

0 1 2 … 𝑛 𝑛 + 1 …

𝑌

0
…

𝑛 − 2
𝑛 − 1
𝑛

𝑛 + 1
…

✔
✔

✔

✔
…

• ✔: event where 𝑋 + 𝑌 = 𝑛
• Each event has probability:	
𝑃 𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘 	
	 	 = 𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘
(because 𝑋, 𝑌 are independent)

• 𝑃 𝑋 + 𝑌 = 𝑛 = sum of
mutually exclusive events
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Sum	of	2	dice	rolls
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2 3 4 5 6 7 8 9 10 11 12

6/36

0

% + ' = )

5/36
4/36
3/36
2/36
1/36.

%
+
'
=
)

The distribution of a sum of 
2 dice rolls is a convolution 
of 2 PMFs.

Example:
𝑃 𝑋 + 𝑌 = 4 =	

𝑃 𝑋 = 1 𝑃 𝑌 = 3
+ 𝑃 𝑋 = 2 𝑃 𝑌 = 2
+ 𝑃 𝑋 = 3 𝑃 𝑌 = 1
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Sum	of	10	dice	rolls	(fun	preview)
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0
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0.08
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The distribution of a sum of 
10 dice rolls is a convolution 
10 PMFs.

𝑋! + 𝑋" +⋯+ 𝑋!3 = 𝑛

𝑃
𝑋 !
+
𝑋 "
+
⋯
+
𝑋 !

3
=
𝑛

Looks kinda Normal…???
(more on this in a few weeks)
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Sum	of	independent	Poissons

12

𝑋~Poi 𝜆- , 𝑌~Poi 𝜆.
𝑋, 𝑌 independent 𝑋 + 𝑌	~Poi(𝜆- + 𝜆.)

𝑃 𝑋 + 𝑌 = 𝑛 ==
4

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘 𝑋 and 𝑌 independent, 
convolution

= =
453

%

𝑒&6!
𝜆!4

𝑘!
𝑒&6"

𝜆"%&4

(𝑛 − 𝑘)!
= 𝑒&(6!86")=

453

%
𝜆!4	𝜆"%&4

𝑘! (𝑛 − 𝑘)!
PMF of Poisson RVs

=
𝑒& 6!86"

𝑛!
=
453

%
𝑛!	

𝑘! (𝑛 − 𝑘)!
𝜆!4	𝜆"%&4 =

𝑒& 6!86"

𝑛!
𝜆! + 𝜆" %

Proof (just for reference):

𝑎 + 𝑏 ! = =
"#$

!
𝑛
𝑘 𝑎"𝑏!%"

Binomial Theorem:

Poi 𝜆! + 𝜆"
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General	sum	of	independent	Poissons
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Holds in general case:

𝑋#~Poi 𝜆#
𝑋# independent for 𝑖 = 1,… , 𝑛 +

$%&

'

𝑋$ ~Poi(+
$%&

'

𝜆$)
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Sum	of	independent	Poissons

• 𝑛 servers with independent number of requests/minute
• Server 𝑖’s requests each minute can be modeled as 𝑋"~Poi 𝜆"

What is the probability that the total number of web requests received at all 
servers in the next minute exceeds 10?

14

𝑋~Poi 𝜆- , 𝑌~Poi 𝜆.
𝑋, 𝑌 independent 𝑋 + 𝑌	~Poi(𝜆- + 𝜆.)



Exercises

15
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🤔
16

Independent	questions

1. Let 𝑋~Bin 30, 0.01  and 𝑌~Bin 50, 0.02  be independent RVs.
• How do we compute 𝑃 𝑋 + 𝑌 = 2  using a Poisson approximation?
• How do we compute 𝑃 𝑋 + 𝑌 = 2  exactly?

2. Let 𝑁 = # of requests to a web server per day. Suppose 𝑁~Poi 𝜆 .
• Each request independently comes from a human (prob. 𝑝), or bot (1 − 𝑝).
• Let 𝑋 be # of human requests/day, and 𝑌 be # of bot requests/day.
Are 𝑋 and 𝑌 independent? What are their marginal PMFs?
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1.	Approximating	the	sum	of	independent	Binomial	RVs
Let 𝑋~Bin 30, 0.01  and 𝑌~Bin 50, 0.02  be independent RVs.

• How do we compute 𝑃 𝑋 + 𝑌 = 2  using a Poisson approximation?

• How do we compute 𝑃 𝑋 + 𝑌 = 2  exactly?
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𝑃 𝑋 + 𝑌 = 2 = =
453

"

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 2 − 𝑘

= :
&'(

)
30
𝑘 0.01& 0.99 *(#& 50

2 − 𝑘 0.02)#&0.98+(#()#&)≈ 0.2327
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2.	Web	server	requests
Let 𝑁 = # of requests to a web server per day. Suppose 𝑁~Poi 𝜆 .
• Each request independently comes from a human (prob. 𝑝), or bot (1 − 𝑝).
• Let 𝑋 be # of human requests/day, and 𝑌 be # of bot requests/day.
Are 𝑋 and 𝑌 independent? What are their marginal PMFs?

 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 =	 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 	𝑁 = 𝑥 + 𝑦 𝑃 𝑁 = 𝑥 + 𝑦
   +𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 	𝑁 ≠ 𝑥 + 𝑦 𝑃 𝑁 ≠ 𝑥 + 𝑦

 =    𝑃 𝑋 = 𝑥 𝑁 = 𝑥 + 𝑦 𝑃 𝑌 = 𝑦|	𝑋 = 𝑥, 𝑁 = 𝑥 + 𝑦 𝑃 𝑁 = 𝑥 + 𝑦

= 	 𝑥 + 𝑦
𝑥 𝑝$ 1 − 𝑝 ' 	 ⋅ 	 1	 ⋅ 𝑒&6

𝜆$8'

𝑥 + 𝑦 !	

= 	
𝑥 + 𝑦 !
𝑥! 𝑦!

𝑒!"
𝜆𝑝 # 𝜆 1 − 𝑝

$

𝑥 + 𝑦 !
= 	 𝑒!"%

𝜆𝑝 #

𝑥!
⋅ 𝑒!" &!% 𝜆 1 − 𝑝

$

𝑦!
	

 = 	 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦  
18

Given 𝑁 = 𝑥 + 𝑦 indep. trials, 
𝑋|𝑁 = 𝑥 + 𝑦~Bin 𝑥 + 𝑦, 𝑝

where 𝑋~Poi 𝜆𝑝 , 𝑌~Poi 𝜆 1 − 𝑝
Yes, 𝑋 and 𝑌 are 

independent!

Law of Total 
Probability

Chain Rule
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Independence	of	multiple	random	variables
Recall independence of
𝑛	events 𝐸&, 𝐸E, … , 𝐸':

We have independence of 𝑛 discrete random variables 𝑋&, 𝑋E, … , 𝑋' if
 for all 𝑥&, 𝑥E, … , 𝑥':

𝑃 𝑋& = 𝑥&, 𝑋E = 𝑥E, … , 𝑋' = 𝑥' =?
$%&

'

𝑃 𝑋$ = 𝑥$

19

for 𝑟 = 1,… , 𝑛:
 for every subset 𝐸!, 𝐸", … , 𝐸?: 

𝑃 𝐸!, 𝐸", … , 𝐸? = 𝑃 𝐸! 𝑃 𝐸" ⋯𝑃 𝐸?
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Independence	is	symmetric
If 𝑋 and 𝑌 are independent random variables, then
 𝑋 is independent of 𝑌, and 𝑌 is independent of 𝑋

Let 𝑁 be the number of times you roll 2 dice repeatedly until a 4 is rolled 
(the player wins), or a 7 is rolled (the player loses).
Let 𝑋 be the value (4 or 7) of the final throw.
• Is 𝑁	independent of 𝑋? 𝑃 𝑁 = 𝑛|𝑋 = 7 = 𝑃 𝑁 = 𝑛 ?

     𝑃 𝑁 = 𝑛|𝑋 = 4 = 𝑃 𝑁 = 𝑛 ?
• Is 𝑋	independent of 𝑁? 𝑃 𝑋 = 4|𝑁 = 𝑛 = 𝑃 𝑋 = 4 ?

     𝑃 𝑋 = 7|𝑁 = 𝑛 = 𝑃 𝑋 = 7 ?

Redux: Independence is not always intuitive, but it is always symmetric.

20

(yes, easier
to intuit)



Expectation	of	
Common	RVs
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Linearity	of	Expectation:	Important
Expectation is a linear mathematical operation. If 𝑋 = ∑$%&' 𝑋$ 	:

• Even if you don’t know the distribution of 𝑋 (e.g., because the joint 
distribution of 𝑋&, … , 𝑋'  is unknown), you can still compute 
expectation of 𝑋. 

• Problem-solving key:
Define 𝑋$ such that

22

𝐸 𝑋 = 𝐸 0
IJ-

K

𝑋I =0
IJ-

K

𝐸 𝑋I

𝑋 ==
#5!

%

𝑋#

Most common use cases:
• 𝐸 𝑋#  easy to calculate
• Sum of dependent RVs
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Expectations	of	common	RVs:	Binomial

23

𝑋~Bin(𝑛, 𝑝) 𝐸 𝑋 = 𝑛𝑝 

Review

# of successes in 𝑛 independent trials
with probability of success 𝑝

𝑋 =0
IJ-

K

𝑋I

Recall: Bin 1, 𝑝 = Ber 𝑝

𝐸 𝑋 = 𝐸 =
#5!

%

𝑋# ==
#5!

%

𝐸 𝑋# ==
#5!

%

𝑝 = 𝑛𝑝Let 𝑋' = 𝑖th trial is heads
𝑋'~Ber 𝑝 , 𝐸 𝑋' = 𝑝
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Expectations	of	common	RVs:	Negative	Binomial

24

# of independent trials with probability
of success 𝑝 until 𝑟 successes

𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = F
G
 

1. How should we define 𝑌$?

2. How many terms are in our summation?
𝑌 =0

IJ-

?

𝑌I

Recall: NegBin 1, 𝑝 	=	Geo 𝑝
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Expectations	of	common	RVs:	Negative	Binomial
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# of independent trials with probability
of success 𝑝 until 𝑟 successes

𝑌~NegBin(𝑟, 𝑝) 𝐸 𝑌 = F
G
 

Let 𝑌' = # trials to get 𝑖th success (after
  𝑖 − 1 th success)
    𝑌'~Geo 𝑝 , 𝐸 𝑌' =

&
%

𝐸 𝑌 = 𝐸 =
#5!

?

𝑌# ==
#5!

?

𝐸 𝑌# ==
#5!

?
1
𝑝
=
𝑟
𝑝

𝑌 =0
IJ-

?M	

𝑌I

Recall: NegBin 1, 𝑝 	=	Geo 𝑝


