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Normal	Random	Variables

• Used to model many real-life situations because it maximizes entropy 
(i.e., randomness) for a given mean and variance.

• Also useful for approximating the Binomial random variable!

3

𝑋~𝒩(𝜇, 𝜎!)
mean variance
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Website	testing

4

Approach 1: Binomial

𝑋~Bin 𝑛 = 100, 𝑝 = 0.5
Want: 𝑃 𝑋 ≥ 65

𝑃 𝑋 ≥ 65 = .
!"#$

%&&
100
𝑘 0.5! 1 − 0.5 %&&'!

Define

Solve

• 100 people are presented with a new website design.
• 𝑋 = # people whose time on site increases
• PM assumes design has no effect, so assume P(stickier) = 0.5 independently.
• CEO will endorse the new design if 𝑋 ≥ 65.

What is 𝑃 CEO endorses change ? Give a numerical approximation.
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Don’t	worry,	Normal	approximates	Binomial

Galton Board

(We’ll explain why in 2 weeks)
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Website	testing

6

Approach 1: Binomial

𝑋~Bin 𝑛 = 100, 𝑝 = 0.5
Want: 𝑃 𝑋 ≥ 65

Define

Approach 2: approximate with Normal
Define
𝑌~𝒩 𝜇, 𝜎(

𝜇 = 𝑛𝑝 = 50 
𝜎! = 𝑛𝑝 1 − 𝑝 = 25 
𝜎 = 25 = 5 

𝑃 𝑋 ≥ 65 ≈ 0.0018
𝑃 𝑋 ≥ 65 ≈ 𝑃 𝑌 ≥ 65 = 1 − 𝐹"(65)

= 1 − Φ #$%$&
$

= 1 − Φ 3 ≈ 0.0013	? 
(this approach is missing something important)⚠ ⚠

🤨

• 100 people are given a new website design.
• 𝑋 = # people whose time on site increases
• PM assumes design has no effect, so P(stickier) = 0.5 independently.
• CEO will endorse the new design if 𝑋 ≥ 65.

What is 𝑃 CEO endorses change ? Give a numerical approximation.

Solve
Solve

jerry$ python
>>> from scipy.stats import binom, norm
>>> binom.pmf(range(65, 101), n, p).sum()
0.001758820861485058
>>> 1 - norm(50, 5).cdf(65)
0.0013498980316301035
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Website	testing	(with	continuity	correction)

7

64 65 66               

𝑃 𝑋 ≥ 65

65

≈ 𝑃 𝑌 ≥ 64.5
≈ 0.0018 ✅ the better

Approach 2

Binomial

Normal

You must perform a continuity correction when 
approximating a Binomial RV with a Normal RV.

In our website testing, 𝑌~𝒩 50, 25 approximates 𝑋~Bin 100,0.5 .
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Continuity	correction
If 𝑌~𝒩 𝑛𝑝, 𝑛𝑝(1 − 𝑝) approximates 𝑋~Bin(𝑛, 𝑝), how do we approximate 
the following probabilities?

8

Discrete (e.g., Binomial) 
probability question

Continuous (Normal) 
probability question

𝑃 𝑋 = 6
𝑃 𝑋 ≥ 6
𝑃 𝑋 > 6
𝑃 𝑋 < 6
𝑃 𝑋 ≤ 6

…  5 6 7 …
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Continuity	correction
If 𝑌~𝒩 𝑛𝑝, 𝑛𝑝(1 − 𝑝) approximates 𝑋~Bin(𝑛, 𝑝), how do we approximate 
the following probabilities?
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Discrete (e.g., Binomial) 
probability question

Continuous (Normal) 
probability question

𝑃 𝑋 = 6
𝑃 𝑋 ≥ 6
𝑃 𝑋 > 6
𝑃 𝑋 < 6
𝑃 𝑋 ≤ 6

𝑃 5.5 ≤ 𝑌 ≤ 6.5
𝑃 𝑌 ≥ 5.5
𝑃 𝑌 ≥ 6.5
𝑃 𝑌 ≤ 5.5
𝑃 𝑌 ≤ 6.5

…  5 6 7 …
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Who	gets	to	approximate?

10

𝑋~Bin 𝑛, 𝑝
𝐸 𝑋 = 𝑛𝑝

Var 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑌~𝒩 𝜇, 𝜎!
𝜇 = 𝑛𝑝

𝜎( = 𝑛𝑝(1 − 𝑝)

𝑌~Poi(𝜆)
𝜆 = 𝑛𝑝

?
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1. If there is a choice, use Gaussian to approximate.
2. When using Normal to approximate a discrete RV, use a continuity correction.

Who	gets	to	approximate?

11

Poisson approximation
𝑛 large (> 20), 𝑝 small (< 0.05)

slight dependence okay

Normal approximation
𝑛 large (> 20), 𝑝 mid-ranged (𝑛𝑝 1 − 𝑝 > 10)

independence
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Stanford	Admissions	(a	while	back)
Stanford accepts 2480 students.
• Each admitted student matriculates with p = 0.68 (independently)
• Let 𝑋 = # of students who will attend

What is 𝑃 𝑋 > 1745 ? Give a numerical approximation.

12

Strategy: A. Just Binomial
B. Poisson
C. Normal
D. None/other
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Stanford	Admissions	(a	while	back)
Stanford accepts 2480 students.
• Each admitted student matriculates with p = 0.68 (independently)
• Let 𝑋 = # of students who will attend

What is 𝑃 𝑋 > 1745 ? Give a numerical approximation.
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Strategy: A. Just Binomial
B. Poisson
C. Normal
D. None/other

𝐸 𝑋 = 𝑛𝑝 = 1686 
Var 𝑋 = 𝑛𝑝 1 − 𝑝 ≈ 540 → 𝜎 = 23.3 

computationally expensive (also not an approximation)
𝑝 = 0.68, not small enough
Variance 𝑛𝑝 1 − 𝑝 = 540 > 10

Define an approximation Solve
Let 𝑌~𝒩 𝐸 𝑋 , Var 𝑋

𝑃 𝑋 > 1745 ≈ 𝑃 𝑌 ≥ 1745.5 Continuity
correction

⚠

𝑃 𝑌 ≥ 1745.5 = 1 − 𝐹 1745.5

= 1 − Φ
1745.5 − 1686

23.3
= 1 − Φ 2.54 ≈ 0.0055

✅



Discrete	Joint	
RVs

14
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From	last	slide	deck

What is the probability that the Warriors win?
How do you model zero-sum games?

Review

𝑃 𝐴! > 𝐴"
This is a probability of an event 
involving two random variables!
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Joint	probability	mass	functions

16

Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

𝑃 𝑋 = 1
probability of

an event

𝑃 𝑋 = 𝑘
probability mass function

𝑋 
random variable



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Joint	probability	mass	functions

17

Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

𝑋 
random variable

𝑃 𝑋 = 1
probability of

an event

𝑃 𝑋 = 𝑘
probability mass function

𝑃 𝑋 = 1 ∩ 𝑌 = 6

probability of the intersection
of two events

𝑃 𝑋 = 1, 𝑌 = 6
new notation: the comma

𝑋, 𝑌
random variables

𝑃 𝑋 = 𝑎, 𝑌 = 𝑏

joint probability mass function
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Discrete	joint	distributions
For two discrete joint random variables 𝑋 and 𝑌,
the joint probability mass function is defined as:

𝑝!,# 𝑎, 𝑏 = 𝑃 𝑋 = 𝑎, 𝑌 = 𝑏

The marginal distributions of the joint PMF are defined as:

18

𝑝5 𝑎 = 𝑃 𝑋 = 𝑎 =.
6

𝑝5,8 𝑎, 𝑦

𝑝8 𝑏 = 𝑃 𝑌 = 𝑏 =.
9

𝑝5,8 𝑥, 𝑏 Use marginal distributions to 
extract a 1D RV from a joint PMF.
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Two	dice
Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

1. What is the joint PMF of 𝑋 and 𝑌?

19

𝑝5,8 𝑎, 𝑏 = 1/36 𝑎, 𝑏 ∈ 1,1 , … , 6,6
𝑋

1 2 3 4 5 6

𝑌

1 1/36 ... ... ... ... 1/36 

2 ... ... ... ... ... ...

3 ... ... ... ... ... ...

4 ... ... ... ... ... ...

5 ... ... ... ... ... ...

6 1/36 ... ... ... ... 1/36 

Probability table
• All possible outcomes

for several discrete RVs
• Not parametric (e.g., 

parameter 𝑝 in Ber(𝑝))

𝑃 𝑋 = 4, 𝑌 = 3
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Two	dice
Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

1. What is the joint PMF of 𝑋 and 𝑌?

2. What is the marginal PMF of 𝑋?

20

𝑝5,8 𝑎, 𝑏 = 1/36 𝑎, 𝑏 ∈ 1,1 , … , 6,6

𝑝) 𝑎 = 𝑃 𝑋 = 𝑎 =D
*

𝑝)," 𝑎, 𝑦 = D
*,-

#
1
36

=
1
6 𝑎 ∈ 1, … , 6
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A	computer	(or	three)	in	every	house.

21

0 1 2 3

0 .16 ? .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌 
(#

 P
Cs

)

Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers total (Macs + PCs).

1. What is 𝑃 𝑋 = 1, 𝑌 = 0 , the missing entry in the probability table?
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Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers total (Macs + PCs).

1. What is 𝑃 𝑋 = 1, 𝑌 = 0 , the missing entry in the probability table?

A	computer	(or	three)	in	every	house.

22

0 1 2 3

0 .16 .12 .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌 
(#

 P
Cs

)

D
.

D
*

𝑝)," 𝑥, 𝑦 = 1

A joint PMF must sum to 1:
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0 1 2 3

0 .16 .12 .07 .04 .39

1 .12 .14 .12 0 .38

2 .07 .12 0 0 .19

3 .04 0 0 0 .04

.39 .38 .19 .04

A	computer	(or	three)	in	every	house.

23

𝑋 (# Macs)

𝑌 
(#

 P
Cs

)

Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers total (Macs + PCs).

2. How do you compute the marginal PMF of 𝑋?

A

sum rows here
B

C

su
m

 c
ol

s 
he

re
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0 1 2 3

0 .16 .12 .07 .04 .39

1 .12 .14 .12 0 .38

2 .07 .12 0 0 .19

3 .04 0 0 0 .04

.39 .38 .19 .04

A	computer	(or	three)	in	every	house.

24

𝑋 (# Macs)

𝑌 
(#

 P
Cs

)

Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers total (Macs + PCs).

2. How do you compute the marginal PMF of 𝑋?

A

sum rows here
B

C

su
m

 c
ol

s 
he

re
A.  𝑝)," 𝑥, 0 = 𝑃 𝑋 = 𝑥, 𝑌 = 0
B.  Marginal PMF of 𝑋

C.  Marginal PMF of 𝑌

𝑝! 𝑥 = 2
"

𝑝!,$ 𝑥, 𝑦

𝑝$ 𝑦 = 2
%

𝑝!,$ 𝑥, 𝑦

To find a marginal distribution over one variable, 
sum over all other variables in the joint PMF.
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A	computer	(or	three)	in	every	house.

25

0 1 2 3

0 .16 .12 .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌 
(#

 P
Cs

)

Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers total (Macs + PCs).

3. Let 𝐶 = 𝑋 + 𝑌. What is 𝑃 𝐶 = 3 ?
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A	computer	(or	three)	in	every	house.

26

0 1 2 3

0 .16 .12 .07 .04

1 .12 .14 .12 0

2 .07 .12 0 0

3 .04 0 0 0

𝑋 (# Macs)

𝑌 
(#

 P
Cs

)

Consider households in Silicon Valley.
• A household has 𝑋 Macs and 𝑌 PCs.
• Each house has a maximum of 3 computers total (Macs + PCs).

3. Let 𝐶 = 𝑋 + 𝑌. What is 𝑃 𝐶 = 3 ?

𝑃 𝐶 = 3 = 𝑃 𝑋 + 𝑌 = 3  

=<
!

<
"

𝑃 𝑋 + 𝑌 = 3|𝑋 = 𝑥, 𝑌 = 𝑦 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

= 𝑃 𝑋 = 0, 𝑌 = 3 + 𝑃 𝑋 = 1, 𝑌 = 2 	
    +𝑃 𝑋 = 2, 𝑌 = 1 + 𝑃 𝑋 = 3, 𝑌 = 0

Law of Total Probability

We’ll come back to sums of RVs next lecture!



Multinomial	RV

27
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Recall	the	good	times

28

Permutations
𝑛!

How many ways are 
there to order 𝑛 

objects?
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Multinomials generalize 
Binomials for counting.

Counting	unordered	objects

29

Binomial coefficient

How many ways are there
to group 𝑛 objects into

two groups of size 𝑘 and 
𝑛 − 𝑘, respectively?

Called the binomial coefficient
because of something from aLgEbRa

Multinomial coefficient

How many ways are there
to group 𝑛 objects into

𝑟 groups of sizes 𝑛-, 𝑛!, …, 𝑛4 
respectively?

𝑛
𝑘 =

𝑛!
𝑘! 𝑛 − 𝑘 !

𝑛
𝑛%, 𝑛(, … , 𝑛C =

𝑛!
𝑛%! 𝑛(! ⋯ 𝑛C!	
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Multinomial RVs also generalize 
Binomial RVs for probability!

Probability

30

Binomial RV

What is the probability
of getting 𝑘 successes 

and 𝑛 − 𝑘 failures
in 𝑛 trials?

Binomial # of ways of 
ordering the successes

Probability of each ordering 
of 𝑘 successes is equal + 
mutually exclusive 

𝑃 𝑋 = 𝑘 = 𝑛
𝑘 𝑝K 1 − 𝑝 LMK

Multinomial RV

What is the probability of 
getting 𝑐- of outcome 1,
𝑐! of outcome 2, …, and

 𝑐5 of outcome 𝑚
in 𝑛 trials?
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Multinomial	Random	Variable
Consider an experiment of 𝑛 independent trials:
• Each trial results in one of 𝑚 outcomes. 𝑃 outcome 𝑖 = 𝑝E, 
• Let 𝑋E= # trials with outcome 𝑖

31

Joint PMF
𝑃 𝑋! = 𝑐!, 𝑋" = 𝑐", … , 𝑋# = 𝑐# =

𝑛
𝑐!, 𝑐", … , 𝑐# 𝑝!

$!𝑝"
$"⋯𝑝#

$#

where D
6,-

5

𝑐6 = 𝑛 and D
6,-

5

𝑝6 = 1

Multinomial # of ways of 
ordering the outcomes

Probability of each ordering 
is equal + mutually exclusive 

<
#$%

&

𝑝# = 1
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Hello	dice	rolls,	my	old	friends
A fair, six-sided die is rolled 7 times.
What is the probability of getting:

32

• 1 one
• 1 two

• 0 threes
• 2 fours

• 0 fives
• 3 sixes
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Hello	dice	rolls,	my	old	friends
A fair, six-sided die is rolled 7 times.
What is the probability of getting:

33

• 1 one
• 1 two

• 0 threes
• 2 fours

• 0 fives
• 3 sixes

𝑃 𝑋% = 1, 𝑋( = 1, 𝑋F = 0, 𝑋G = 2, 𝑋$ = 0, 𝑋# = 3

= 7
1,1,0,2,0,3

1
6

% 1
6

% 1
6

& 1
6

( 1
6

& 1
6

F

= 420
1
6

H
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Hello	dice	rolls,	my	old	friends
A fair, six-sided die is rolled 7 times.
What is the probability of getting:

34

• 1 one
• 1 two

• 0 threes
• 2 fours

• 0 fives
• 3 sixes

𝑃 𝑋% = 1, 𝑋( = 1, 𝑋F = 0, 𝑋G = 2, 𝑋$ = 0, 𝑋# = 3

= 7
1,1,0,2,0,3

1
6

% 1
6

% 1
6

& 1
6

( 1
6

& 1
6

F

= 420
1
6

H

# of times
a six appears

probability
of rolling a sixchoose where

the sixes appear
this many times
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Probabilistic	text	analysis
Ignoring the order of words…
What is the probability of any given word that you write in English?
• 𝑃 word ="the" > 𝑃 word = "susurration"
• 𝑃 word = "Stanford" > 𝑃 word = "Cal"

Probabilities of counts of words = Multinomial distribution

35

👈

A document is a large multinomial.
(according to the Global Language Monitor,
there are 988,968 words in the English language 
used on the internet.)



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Probabilistic	text	analysis
Probabilities of counts of words = multinomial distribution

Example document:
"When my late husband was alive he deposited some amount of Money 

with overseas Bank in which the amount will be declared to you once you 
respond to this message indicating your interest in helping to receive the 

fund and use it for Heavens work as my wish."

36

#words: 𝑛 = 48

𝑃 	 spam =
48!

1! 1! 1! 1!⋯ 3!
𝑝bank
% 𝑝fund

% ⋯𝑝to
F

bank = 1
fund = 1
money = 1
wish = 1
…
to = 3 Note: 𝑃 bank spam

writer ≫ 𝑃 bank writer=
you
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Old	and	New	Analysis

Authorship of the Federalist Papers
• 85 essays advocating ratification

of the US constitution
• Written under the pseudonym “Publius”

(really, Alexander Hamilton, James Madison, John Jay)

Who wrote which essays?
• Analyze probability of words in each essay and compare against word 

distributions from known writings of three authors
• Curious what the analysis is? Read this!

37

https://chrispiech.github.io/probabilityForComputerScientists/en/examples/federalist/


Statistics	of	
Two	RVs

38



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Expectation	and	Covariance
In real life, we often have many RVs interacting at once.
• We’ve seen some simpler cases (e.g., sum of independent Bernoullis).
• Come Monday, we’ll discuss sums of Binomials, Poissons, etc.
• In general, manipulating joint PMFs is difficult.
• Fortunately, you don’t need to model joint RVs completely all the time. 

Instead, we’ll focus next on reporting statistics of multiple RVs:
• Expectation of sums (you’ve seen some of this, more on Monday)
• Covariance: measure of how two random variable vary with each other 

(more next Wednesday and Friday)

39
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Properties	of	Expectation,	extended	to	two	RVs

40

(we’ve seen this; 
we’ll prove today!)

True for both independent 
and dependent random 
variables!

1. Linearity:

𝐸 𝑎𝑋 + 𝑏𝑌 + 𝑐 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌 + 𝑐

2. Expectation of a sum = sum of expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋, 𝑌 = .
9

.
6

𝑔 𝑥, 𝑦 𝑝5,8(𝑥, 𝑦)
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Proof	of	expectation	of	a	sum	of	RVs

41

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

D
.

D
*

𝑥 + 𝑦 𝑝)," 𝑥, 𝑦
LOTUS,
𝑔 𝑋, 𝑌 = 𝑋 + 𝑌

=D
.

D
*

𝑥𝑝)," 𝑥, 𝑦 +D
.

D
*

𝑦𝑝)," 𝑥, 𝑦
Linearity of summations
(cont. case: linearity of integrals)

=D
.

𝑥D
*

𝑝)," 𝑥, 𝑦 +D
*

𝑦D
.

𝑝)," 𝑥, 𝑦

Marginal PMFs for 𝑋 and 𝑌=D
.

𝑥𝑝) 𝑥 +D
*

𝑦𝑝" 𝑦

= 𝐸 𝑋 + 𝐸[𝑌]

𝐸 𝑋 + 𝑌 =


