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Normal Random Variable

def A Normal random variable X is defined as follows:
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Carl Friedrich Gauss

Carl Friedrich Gauss (1777-1855) was a remarkably influential
German mathematician.

April 1777 — 23 February 1855) was a German mathematician and physicist who made significant
contributions to many fields, including algebra, analysis, astronomy, differential geometry, electrostatics, ) '
geodesy, geophysics, magnetic fields, matrix theory, mechanics, number theory, optics and statistics. JUSt WOwW!

Sometimes referred to as the Princeps mathematicorum!'! (Latin for "the foremost of mathematicians”) and
"the greatest mathematician since antiquity”, Gauss had an exceptional influence in many fields of
mathematics and science, and is ranked among history’s most influential mathematicians.?]

Did not invent Normal distribution but rather popularized it.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University



Why the Normal?

Common for natural phenomena:
height, weight, etc.

*  Most noise in the world is Normal

* Often results from the sum of many
random variables

That’s what they
* Sample means are distributed normally want you to believe...
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Why the Normal?

Actually log-normal-

fﬂnmjh ‘Hea

\lawwt\/((/,
ore W

Just an assumption}

Only if equally weighted

we wilt Gheby Hac

. i (okay this one is true, we’ll see
« Sample means are distributed normally this in 3 weeks)
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Okay, so why the Normal?

Part of CS109 learning goals:

* Translate a problem statement into a random variable

In other words: model real life situations with probability distributions

How do you model student heights?

* Suppose you have data from one classroom.

0.25
0.2
0.15
0.1
0.05
0]

I A™> Fits perfectly!

N I But what about in
\
\\-/’ N

. another classroom?

/ \
1 N\

O ... 44 48 52 56 60 64 .. 90
value
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|S
Part of CS109 learning goals: v Lan comae art glnvﬁfu. Comp

* Translate a problem statement into a random varg’de pmtm

In other words: model real life situations with probability distributions

How do you model student heights?
* Suppose you have data from one classroom.

0.25

Occam’s Razor:

0.2 =T e Same mean/var “Non sunt multiplicanda
) / \ - - - ”
0.15 ¢ )/ Y  Generalizes well entia sine necessitate.
0.1 /' —‘ \\ Entities should not be multiplied
0.05 / A without necessity.
7/ N\
O [ = T T T T \F-'hl_ . . .
O . 44 48 52 56 60 64 .. 90 A Gaussian maximizes entropy for a

value given mean and variance.
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Why the Normal?

Actually log-nov- d

{00
de(sl iption

. LY
e \,‘. 5 Only if equally weighted

‘06 ] . (okay this one is true, we'll see
Samplh™ _uns are distributed normally this in 3 weeks)

Stay critical of how to model real-
world phenomena.
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Anatomy of a beautiful equation

Let X~V (u, 02).

The PDF of X is defined as:

1 _
f(x) = e

exponential
tail

normalizing constant

U
I
0
X

T
f1 2 3
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stan OI'd UI'llVCI'Slty 10



Normal Random Variable

mean variance

X~N (1, 0%)

Match PDF to distribution:
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Getting to class

You spend some minutes, X, traveling
between classes.

* Average time spent: u© = 4 minutes
- Variance of time spent: 6% = 2 minutes?

Suppose X is normally distributed. What is the
probability you spend = 6 minutes traveling?

X~Nu=4,0%=2)

f//"
0 (0%0) 1 _ (x 7@
P(X = 6) =J f(x)dx =f ——e _(4) dx
N~ 6 6 2’\/-77: ? 2
N Love and Anger in the

(tell Jerry if you solve this analytically and we’ll be famous together) Same Formula
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Computing probabilities with Normal RVs

For a Normal RV X~ (u, 0%), its CDF has no closed form.

X " (v — 11)? I Cannot be
I A solved
P(X<x)=F(x) =j 0_\/2—7_[6 20 dy analytically

However, we can solve for probabilities numerlca usm function
QV{')MW\% QJ’M’M("

/‘M

X — U 9 qam'ro get here, we'll first
(—) need to know some
properties of Normal RVs.

F(x)=®
o

A function that has been
solved numerically
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Normal RV:
Properties




Properties of Normal RVs

Let X~V (u, 62) with CDF P(X < x) = F(x).

Linear transformations of Normal RVs are also Normal RVs.

IfY = aX + b, then Y~N (au + b, a’c?).

The PDF of a Normal RV is symmetric about the mean p. | Suppredto

Flu—x)=1—-F(u+x)

Fhic caerf(ﬂf’ ova | Puvple Y — =¥ ‘
~ AA
wiaktlee Tho avte 'n Az m7e MEI
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Linear transformations of Normal RVs

Let X~ (u, 02) with CDF P(X < x) = F(x).
Linear transformations of X are also Normal.

IfY =aX + b, thenY~N(au + b, a’c?)

Proof:
E[Y] = E[laX + b] = aE[X]+ b =au+ b Linearity of Expectation

Var(Y) = Var(aX + b) = a*Var(X) = a?¢? Var(aX +b) = a*Var(X)

Proof in Ross,

Y is also Normal _
10™ ed (Section 5.4)
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2. Symmetry of Normal RVs

Let X~N (u, 0%) with CDF P(X < x) = F(x).
The PDF of a Normal RV is symmetric about the mean u.

Flu—x)=1—-—F(u+x)

fx)
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Using symmetry of the Normal RV Flu—x) =1=F(u+x)

Let Z~2V'(0,1) with CDF P(Z < z) = F(2). _Z "

f(2)

Suppose we only knew numeric values
for F(z) and F(y), for some y,z = 0.

=0 | | I
How do we compute the following probabilities? 3 ‘
P(Z < 2) = F(2) F(2)
P(Z < z) 1—F(2)
P(Z = 2) F(z) — F(y)

P(Z < —-2z) N
P(Z = —2z) 2
Ply<Z<2z) ;@
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Using symmetry of the Normal RV Flu—x) =1=F(u+x)

Let Z~(0,1) with CDF P(Z < z) = F(2).

Suppose we only knew numeric values
for F(z) and F(y), forsome y,z = 0.

ities? =0 ‘
F(z)
1—F(2)
F(z) — F(y)

How do we compute the following probabil
P(Z < z) = F(z)
P(Z < z) = F(2)
P(Z = z) =1-F(2)
P(Z < —2z) =1-—F(2)
P(Z =z —2z) = F(z)
P(y<Z<2z) =F(z) — F(y)

Symmetry is particularly useful when
computing probabilities of zero-mean
Normal RVs.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain,
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Normal RV:
Computing
probability




Computing probabilities with Normal RVs

Let X~V (u, 02).

To compute the CDF, P(X < x) = F(x):
We cannot analytically solve the integral, as it has no closed form.
... but we can solve numerically using a function ®:

F(x)=d>(x;M)

CDF of the
Standard Normal, Z

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 21



Standard Normal RV, Z

The Standard Normal random variable Z is defined as follows:

Expectation E[Z]=pu=0
Variance Var(Z) = 0% =1

Z~N(0,1)

Note: not a new distribution; just
a special case of the Normal

L— Jv) sl
Other names: Unit Normal e e mne

0’[)«\€M
CDF of Z definedas: P(Z < z) = ®(2)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 22



® has been numerically computed

Standard Normal Table

An entry in the table is the area under the curve to the left of z, P(Z < z) = ®(z).

k] -2

B [

1

H

3

V4

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0
0.1
0.2
0.3
04
0.5

0.5000
0.5398
0.5793
0.6179
0.6554
0.6915

0.5040
0.5438
0.5832
0.6217
0.6591
0.6950

0.5080
0.5478
0.5871
0.6255
0.6628
0.6985

0.5120
0.5517
0.5910
0.6293
0.6664
0.7019

0.5160
0.5557
0.5948
0.6331
0.6700
0.7054

0.5199
0.5596
0.5987
0.6368
0.6736
0.7088

0.5239
0.5636
0.6026
0.6406
0.6772
0.7123

N\
N
\—r/
0 o~
0.6808
0.7157

o O O

0.6
0.7
0.8
0.9
1.0

0.7257
0.7580
0.7881
0.8159
0.8413

0.7291
0.7611
0.7910
0.8186
0.8438

0.7324
0.7642
0.7939
0.8212
0.8461

0.7357
0.7673
0.7967
0.8238
0.8485

0.7389
0.7703
0.7995
0.8264
0.8508

0.7422
0.7734
0.8023
0.8289
0.8531

0.7454
0.7764
0.8051
0.8315
0.8554

0.7486
0.7793
0.8078
0.8340
0.8577

0.5
0.4
0.3
0.2
0.1
0]
0.8106
0.8365
0.8599

P(Z < 1.31) = ®(1.31)

z =131

o
~

N
—

1.1
1.2
1.3
1.4
1.5

0.8643
0.8849
0.9032
0.9192
0.9332

0.8665
0.8869
0.9049
0.9207
0.9345

0.8686
0.8888
0.9066
0.9222
0.9357

0.8708
0.8906
0.9082
0.9236
0.9370

0.8729
0.8925
0.9099
0.9251
0.9382
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0.8749
0.8943
0.9115
0.9265
0.9394

0.8770
0.8962
0.9131
0.9279
0.9406

0.8790
0.8980
0.9147
0.9292
0.9418

0.8810
0.8997
0.9162
0.9306
0.9429

Standard Normal Table only has
probabilities ®(z) for z = 0.

Stanford University 23



History fact: Standard Normal Table

TABLES

SERVANT

AU CALCUL DES REFRACTIONS

APPROCHANTES DE L’HORIZON.

TABLE PREMIERE,

Intégrales de e='' dt, depuis une valeur
quelconque de t jusqu’a t infinie,

e T P s 3>

¢ Intégrale. Diff. prem.|Diff.IT. | Diff. I11.

0,00 | 0,88622692 | 999968 201 | 199
0,01 | O, 8 62 2724 999767 400 | 199
0.02 ’ 999367 599 | 200
0,03 | 998768 | 799 | 199
0,04 997969 | 998 | 197
0,05 | o, 8%626803 996971 | 1195 | 199
0,66 | 0,82629882 | 995776 | 1394 | 196

The first Standard Normal Table was
computed by Christian Kramp,
French astronomer (1760-1826), in
Analyse des Réfractions
Astronomiques et Terrestres, 1799

Used a Taylor series expansion to the
third power

integral from x = 0.03 to infinity of e*{-x*2}

ffa Extended Keyboard * Upload

Definite integral:

[ e dx = 0.856236
0.03

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 24



Probabilities for a general Normal RV

Let X~V (u, 6%). To compute the CDF P(X < x) = F(x),
we use @, the CDF for the Standard Normal Z~N (0, 1):

F(x)zcb(x_“)

o)
Proof: X, ~ar
defwme nex Vav Ao\l Z 4o \9( T
F(x) =PX <x) o Definition of CDF
—U _x—p
=P(X—u£x—u)=P( - < - ) Algebra + o > 0

—p (Z < X — li) . X;” = %X — %is a linear transform of X.

Y + This is distributed as ' (37;1 -4 01—202) =(0,1)
— @ (x - “) * In other words, “> = Z~2V (0, with CDF &.

0)
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Probabilities for a general Normal RV

Let X~V (u, 6%). To compute the CDF P(X < x) = F(x),
we use @, the CDF for the Standard Normal Z~N (0, 1):

F(x)zcb(x;“)

1. Compute z = (x — u)/o.
2. Look up ®(z) in Standard Normal table.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University
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Campus bikes

You spend some minutes, X, traveling between classes.

* Average time spent: u = 4 minutes
- Variance of time spent: 6% = 2 minutes?

Suppose X is normally distributed. What is the probability
you spend = 6 minutes traveling?

X~N((u=4,0%=2)

1. Compute z = (x;”) 2. Look up ®(2) in table
4 _a(8? ~1 —0.9207
1 —&
V2 = 0.0793

~1 —P(141
( ) Stanford University 27
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Is there an easier way? (yes)

Let X~ (1, 62). What is P(X < x) = F(x)?

* Use Python

from scipy import stats SciPy reference:
X = stats.norm(mu , std ) https://docs.scipy.org/doc/scipy/refere
X.cdf ( X ) nce/generated/scipy.stats.norm.html

'm not sure why Python decided to parameterize stats.norm around the
standard deviation instead of the variance, but it did. ©

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 2s
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Get your Gaussian On

Let X~N(u = 3,0% = 16). Std deviation o = 4. -+ If X~N(u a2), then

1L PX>0) = | —Pxeo) F(o) = @ (2F)
= | — F(p) - Symmetry of the PDF of
D-—3 Normal RV implies
= | - ¢(T> d(—2z)=1—-P(2)

-1 -6 (2)
- (1 - (D)
- @) = [

logkup“)v;(‘\'(/m’(&?u/ O_VW @
Pyt 's <Cipy bvare 4 et ‘1+>
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Get your Gaussian On

Let XNN(M = 3, g% = 16). If X~ (u,02), then

Note standard deviation o = 4. F(x) = @ (Z4)

How would you write each of the below R
Cress . Normal RV implies

probabilities as a function of the O(=2) = 1 — B(2)

standard normal CDF, ®?

P(2< X <5)
P(|X — 3| > 6)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 31



Get your Gaussian On

Let X~N(u = 3,0% = 16). Std deviation g = 4. - If X~N(u a2), then

Fo - ()
2. P2<X<5) = F(G) - PCZ> *  Symmetry of the PDF of
' 52 3 ~ (9:3) Normal RV implies
= Cb("@ 47 4 d(—2z) =1-D(2)
- (L) - o(% )
- ¢(3) - (1 - (D)
4G ) -
=\l0.2d02 || Ik Hacup
v F2b\g

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 32



Get your Gaussian On

Let X~V (u = 3,0% = 16). Std deviation o = 4. If X~ (u, 02), then
F(x) = ® (ﬂ)

o

Symmetry of the PDF of

Normal RV implies
P(|X —3[>6) d(—x) =1 — d(x)

(x—u)

Compute z =
P(X<-3)+P(X >9)

=F(-3)+(1-F(9))

627 (1-0(3)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 33




Get your Gaussian On

Let X~N(u = 3,0% = 16). Std deviation o = 4. -+ If X~N(u a2), then
F(x) = ® (ﬂ)

o

*  Symmetry of the PDF of

Normal RV implies
3. P(|IX-3|>6) d(—x) =1— d(x)

Look up ®(z) in table

(Yo (1-0(3)
(12 ()

~ (0.1337 'ﬁi"

—

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 34



Noisy Wires

Send a voltage of 2V or —2 V on 0.5 1 ' =05
wire (to denote 1 and O, respectively). —~ %% T
X = voltage sent (2 or —2) L:é 8'2 Send 0 7 send N
Y = noise, Y~N(0,1) o X = -2 i x=2
R = X + Y voltage received. . S
Decode: 1 fR>0.5 5 43 210 12 3 45
0 otherwise. R=r

What is P(decoding error | original bit is 1)7?
l.e., we sent 1, but we decoded as 0?

What is P(decoding error | original bit is O)?

These probabilities are unequal. Why might this be useful?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 35



Noisy Wires

Send a voltage of 2V or —2 V on 0.5 1 ' =05
wire (to denote 1 and O, respectively). —~ %% T
X = voltage sent (2 or —2) L:é 8'2 Send 0 L/ se RN
Y = noise, Y~N(0,1) o X = -2 i x=2
R = X + Y voltage received. . S
Decode: 1 ifR > 0.5 5 4 3240 12 3 45
0 otherwise. R=r

What is P(decoding error | original bit is 1)7?
l.e., we sent 1, but we decoded as 0?

P(R<05|X=2)=P2+Y<05)=P(Y <—-1.5) YisStandard Normal
— ®(=1.5) = 1 — ®(1.5) ~ 0.0668

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 36



Noisy Wires

Send a voltage of 2V or —2 V on 0.5 1 ' =05
wire (to denote 1 and O, respectively). —~ %% B

X = voltage sent (2 or —2) = A AN

Y = noise, Y~N(0,1) o Pt ; x=2 '\

R = X + Y voltage received. P . S
Decode: 1 ifR>0.5 5 4 3 210 1 2 3 45

0 otherwise. R=r
0.0668

What is P(decoding error | original bit is 0)? \ — 4’(1"5>
I ——

P(R=05|/X=-2)=P(-2+Y>05)=P(Y =25) = 0.0062
Asymmetric decoding probability: We would like to avoid
mistaking a O for 1. Errors the other way are tolerable.

Stanford University 37



Sampling with
the Normal RV




ELO ratings

Basketball == Stats

Skill

Determination

What is the probability that the Warriors win?
More generally: How can you model zero-sum
games?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 39



ELO ratings

Warriors Ay, ~N (S = 1657,200%)

Each team has an ELO score S,
0.0025 -

calculated based on its 0,002 u=1657
past performance. 0.0015 :
Each game, a team has 0.001 - !
ability A~V (S,2002). 0.0005 1 :
The team with the higher 0 — ' '
- . 1000 1500 2000 2500
sampled ability wins.
_ N Opponents A,~N (S = 1470, 2002)
What is the probability 0.0025 -
that Warriors win 0.002 -
this game? 0.0015 -
0.001 -
Want: P(Warriors win) = P(Ay, > Ap) 0.0005 -
0 |

1000 1500 2000 2500

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain,C____, ...... o



ELO ratings

2
Want: P(Warriors win) = P(4,, > Ap) nggg'ors Aw~N'(S = 1657,2007)
from scipy import stats 0.002 - = ?657
WARRIORS_ELO = 1657 0.0015 - |
OPPONENT_ELO = 1470 0.001 | .
STDEV = 200 :
NTRIALS = 10000 0'0002‘ !

nsuccess = 0 1000 1500 2000 2500

for i in range(NTRIALS): Opponents A,~N'(S = 1470,200%)

w = stats.norm.rvs(WARRIORS_ELO, STDEV) o025 -
o = stats.norm.rvs(OPPONENT_ELO, STDEV)
. 0.002 -
1f w > 0: nSuccess +=1
0.0015 -
print("Warriors sampled win fraction", 0.001 -
float(nSuccess) / NTRIALS) 0.0005 A
0

~ 0.7488, calculated by sampling 1000 1500 2000 2500

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, Co —__, .....cc. —_. o



[s there a better way?

P(Ay > Ap)

* This is a probability of an event involving ) f o
R . actual depiction of someone understanding
tWO COntInUOUS random Va”ableS' joint continuous random variables

* We’'ll solve this problem analytically in less than two weeks’ time.

Big goal for next lecture: Events involving two discrete random variables.
Stay tuned!
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ChatGPT Takeaway

‘ What natural phenomena are often modeled as Gaussian even though they're better

modeled by other distributions? ]
WI

There are some natural phenomena that are often modeled as Gaussian distributions even Vﬁ *‘h cer Pﬂ \,Cl"
though they are better modeled by other distributions. Here are a few examples: \he vn"\' A \n e\ th’ (%(Z{’\
1. Income distribution: While it is common to assume that income follows a Gaus;:h (‘H" WSV UNA \
distribution, it is actually better modeled using other distributions such as the log-normal
or Pareto distributions.
2. Stock prices: Although stock prices are often assumed to follow a Gaussian distribution,
this assumption does not capture the large and sudden changes in prices that can occur.
A more appropriate model is the fat-tailed distribution, such as the Cauchy distribution.
3. Extreme weather events: Extreme weather events such as hurricanes or tornadoes do not
follow a Gaussian distribution. Rather, they are better modeled using a power-law
distribution, which captures the fact that these events are rare but can have very large
magnitudes.
4. Reaction times: The distribution of reaction times in tasks such as decision-making or
perceptual tasks is often assumed to be Gaussian. However, recent research has shown

that these distributions are better described by ex-Gaussian or Lévy distributions.
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