#### Table of Contents

- 2 Continuous RVs
- 12 Uniform RV
- 19 Exponential RV
- 28 CDF.
- 36 Memoryless Property
- 39 Exercises

# 09: Continuous RVs

Jerry Cain January 29, 2024

Lecture Discussion on Ed



# Continuous RVs

# People heights

You are volunteering at the local elementary school fundraiser.

- To buy a t-shirt for your friend Vanessa, you need to know her height.
- 1. What is the probability that your friend is 54.0923857234 inches tall?

Essentially 0

2. What is the probability that Vanessa is between 52-56 inches tall?



#### Continuous RV definition

A random variable *X* is continuous if there is a probability density function  $f(x) \ge 0$  such that for  $-\infty < x < \infty$ :

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

Integrating a PDF must always yield a valid probability, no matter the values of a and b. The PDF must also satisfy:

$$\int_{-\infty}^{\infty} f(x) \, dx = P(-\infty < X < \infty) = 1$$

Note: f(x) is sometimes written as  $f_X(x)$  to be clear the random variable is X.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

## Main takeaway #1

# Integrate f(x) to get probabilities.

PDF Units: probability per units of *X* 



#### PMF vs PDF

#### Discrete random variable X

Probability mass function (PMF): p(x)

To get probability:

$$P(X = x) = p(x)$$

#### Continuous random variable X

Probability density function (PDF):

To get probability:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Both are measures of how likely X is to take on a value or some range of values.

# Computing probability

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

Let *X* be a continuous RV with PDF:

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

What is  $P(X \ge 1)$ ?



# Computing probability

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

Let X be a continuous RV with PDF:

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

What is  $P(X \ge 1)$ ?

Strategy 1: Integrate

$$P(1 \le X < \infty) = \int_{1}^{\infty} f(x)dx = \int_{1}^{2} \frac{1}{2}xdx$$
$$= \frac{1}{2} \left(\frac{1}{2}x^{2}\right) \Big|_{1}^{2} = \frac{1}{2} \left[2 - \frac{1}{2}\right] = \frac{3}{4}$$



Strategy 2: Know triangles

$$1 - \frac{1}{2} \left( \frac{1}{2} \right) = \frac{3}{4}$$

Wait! Is this even legal?

$$P(0 \le X < 1) = \int_0^1 f(x) dx$$
??

# Main takeaway #2

For a continuous random variable X with PDF f(x),

$$P(X=c) = \int_c^c f(x) dx = 0.$$



Contrast with PMF in discrete case: P(X = c) = p(c)

# PDF Properties

For a **continuous** RV X with PDF f,

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$



Interval width  $dx \rightarrow 0$ 



$$(X = c) = 0$$



$$P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = P(a < X \le b)$$

 $\times$  3. f(x) is a probability

It's a probability density!

In the graphed PDF above,

$$P(x_1 \le X \le x_2) > P(x_2 \le X \le x_3)$$

Compare area under the curve



# Determining valid PDFs

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

Which of the following functions are valid PDFs?









# Uniform RV

### Uniform Random Variable

def A Uniform random variable X is defined as follows:

$$X \sim \mathsf{Uni}(\alpha, \beta)$$

$$FDF \qquad f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha \leq x \leq \beta \\ 0 & \text{otherwise} \end{cases}$$
Support:  $[\alpha, \beta]$  (sometimes defined over  $(\alpha, \beta)$ )
$$Variance \qquad Var(X) = \frac{(\beta - \alpha)^2}{12}$$



# Quick check

If  $X \sim \text{Uni}(\alpha, \beta)$ , the PDF of X is:

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha \le x \le \beta \\ 0 & \text{otherwise} \end{cases}$$



What is  $\frac{1}{\beta-\alpha}$  if the following graphs are PDFs of Uniform RVs X?



# Quick check

If  $X \sim \text{Uni}(\alpha, \beta)$ , the PDF of X is:

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha \le x \le \beta \\ 0 & \text{otherwise} \end{cases}$$



What is  $\frac{1}{\beta-\alpha}$  if the following graphs are PDFs of Uniform RVs X?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024









# **Expectation and Variance**

#### Discrete RV X

$$E[X] = \sum_{x} x p(x)$$
$$E[g(X)] = \sum_{x} g(x) p(x)$$

#### Continuous RV X

$$E[X] = \int_{-\infty}^{\infty} x f(x) \ dx$$
$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) \ dx$$

#### Both continuous and discrete RVs

$$E[aX + b] = aE[X] + b$$
  
 $Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}$   
 $Var(aX + b) = a^{2}Var(X)$ 

Linearity of Expectation variance

TL;DR: 
$$\sum_{x=a}^{b} \Rightarrow \int_{a}^{b}$$

# Uniform RV expectation

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

$$= \int_{\alpha}^{\beta} x \cdot \frac{1}{\beta - \alpha} dx$$

$$= \frac{1}{\beta - \alpha} \cdot \frac{1}{2} x^{2} \Big|_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \cdot \frac{1}{2} (\beta^{2} - \alpha^{2})$$

$$= \frac{1}{2} \cdot \frac{(\beta + \alpha)(\beta - \alpha)}{\beta - \alpha} = \frac{\alpha + \beta}{2}$$
 Interpretation:
Average the start & end



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

## Uniform Random Variable

def An **Uniform** random variable *X* is defined as follows:



# Exponential RV

## Grid of random variables

|                     | Number of successes | Time until<br>success |                                     |
|---------------------|---------------------|-----------------------|-------------------------------------|
| One trial           | Ber(p)              | Geo(p)                | One success                         |
| Several<br>trials   |                     |                       | Several<br>successes                |
| Interval<br>of time | $Poi(\lambda)$      | Exp(λ)                | Amount of time before first success |

# Exponential Random Variable

Consider an experiment that lasts a duration of time until success occurs.  $\underline{\text{def}}$  An **Exponential** random variable X is the amount of time until success.

$$X \sim \mathsf{Exp}(\lambda)$$
Support:  $[0, \infty)$ 

$$Expectation \qquad F(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$E[X] = \frac{1}{\lambda} \quad \text{(in extra slides)}$$

$$Variance \qquad Var(X) = \frac{1}{\lambda^2} \quad \text{(on your own)}$$

#### **Examples:**

- Time until next earthquake
- Time for request to reach web server
- Time until water main break on Campus Dr.



# Interpreting $Exp(\lambda)$

 $\underline{\text{def}}$  An Exponential random variable X is the amount of time until success.

$$X \sim \mathsf{Exp}(\lambda)$$
 Expectation  $E[X] = \frac{1}{\lambda}$ 

Based on the expectation E[X], what are the units of  $\lambda$ ?

# Interpreting $Exp(\lambda)$

<u>def</u> An Exponential random variable X is the amount of time until success.

$$X \sim \text{Exp}(\lambda)$$

Expectation

$$E[X] = \frac{1}{\lambda}$$

Based on the expectation E[X], what are the units of  $\lambda$ ?

e.g., average # of successes per second

For both Poisson and Exponential RVs,  $\lambda = \#$  successes/time.



ILL. No. 65. MEMORIAL ARCH, WITH CHURCH IN BACKGROUND, STANFORD UNIVERSITY, SHOWING TYPES OF CARVED WORK WITH THE SANDSTONE.

1906 Earthquake Magnitude 7.8

$$X \sim \text{Exp}(\lambda)$$
  $E[X] = 1/\lambda$   $f(x) = \lambda e^{-\lambda x}$  if  $x \ge 0$ 

Major earthquakes (magnitude 8.0+) occur once every 500 years.\*

1. What is the probability of a major earthquake in the next 30 years?

#### We know on average:

$$500 \quad \frac{\text{years}}{\text{earthquake}}$$

$$0.002 \frac{\text{earthquakes}}{\text{year}}$$

$$1 \quad \frac{\text{earthquakes}}{500 \text{ years}}$$

$$X \sim \text{Exp}(\lambda)$$
  $E[X] = 1/\lambda$   $f(x) = \lambda e^{-\lambda x}$  if  $x \ge 0$ 

Major earthquakes (magnitude 8.0+) occur once every 500 years.\*

1. What is the probability of a major earthquake in the next 30 years?

#### Define events/ RVs & state goal

Solve

X: when next earthquake happens

$$X \sim \text{Exp}(\lambda = 0.002)$$
  
$$\lambda : \text{year}^{-1} = 1/500$$

Want: P(X < 30)

 $\int e^{cx} dx = \frac{1}{2} e^{cx}$ 

Recall

$$X \sim \text{Exp}(\lambda)$$
  $E[X] = 1/\lambda$   $f(x) = \lambda e^{-\lambda x}$  if  $x \ge 0$ 

Major earthquakes (magnitude 8.0+) occur once every 500 years.\*

- 1. What is the probability of a major earthquake in the next 30 years?
- 2. What is the standard deviation of years until the next earthquake?

Define events/ RVs & state goal

Solve

X: when next earthquake happens

$$X \sim \text{Exp}(\lambda = 0.002)$$
  
 $\lambda : \text{year}^{-1}$ 

Want: P(X < 30)

# Cumulative Distribution Functions

## Cumulative Distribution Function (CDF)

For a random variable X, the cumulative distribution function (CDF) is defined as

$$F(a) = F_X(a) = P(X \le a)$$
, where  $-\infty < a < \infty$ 

For a discrete RV X, the CDF is:

$$F(a) = P(X \le a) = \sum_{\text{all } x \le a} p(x)$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

For a continuous RV X, the CDF is:

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx$$

CDF is a probability, though PDF is not.

If you learn to use CDFs, you can avoid integrating the PDF.

# Using the CDF for continuous RVs

For a **continuous** random variable X with PDF f(x), the CDF of X is

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$

Matching (choices are used 0/1/2 times)

1. 
$$P(X < a)$$

A. 
$$F(a)$$

2. 
$$P(X > a)$$
 B.  $1 - F(a)$ 

$$B. \quad 1 - F(a)$$

3. 
$$P(X \ge a)$$

3. 
$$P(X \ge a)$$
 C.  $F(b) - F(a)$ 

4. 
$$P(a \le X \le b)$$
 D.  $F(a) - F(b)$ 

D. 
$$F(a) - F(b)$$

# Using the CDF for continuous RVs

For a **continuous** random variable X with PDF f(x), the CDF of X is

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$

Matching (choices are used 0/1/2 times)

1. 
$$P(X < a)$$
 A.  $F(a)$ 

2. 
$$P(X > a)$$
 B.  $1 - F(a)$ 

3. 
$$P(X \ge a)$$
 C.  $F(b) - F(a)$  (next slide)  
4.  $P(a \le X \le b)$  D.  $F(a) - F(b)$ 

4. 
$$P(a \le X \le b)$$
 D.  $F(a) - F(b)$ 

# Using the CDF for continuous RVs

For a continuous random variable X with PDF f(x), the CDF of X is

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$

**4.** 
$$P(a \le X \le b) = F(b) - F(a)$$

Proof:

$$F(b) - F(a) = \int_{-\infty}^{b} f(x)dx - \int_{-\infty}^{a} f(x)dx$$

$$= \left(\int_{-\infty}^{a} f(x)dx + \int_{a}^{b} f(x)dx\right) - \int_{-\infty}^{a} f(x)dx$$

$$= \int_{a}^{b} f(x)dx$$

$$= \int_{a}^{b} f(x)dx$$
Lies Very Chris Ricch, Mahrens Schami, and James Cain, CSM



# Addendum to main takeaway #1

# Integrate f(x) to get probabilities.\*



\*If you have F(a), you already have probabilities, since  $F(a) = \int_{-\infty}^{a} f(x) dx$ 

$$P(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

## CDF of an Exponential RV

$$X \sim \text{Exp}(\lambda) \ f(x) = \lambda e^{-\lambda x} \ \text{if } x \ge 0$$

$$X \sim \text{Exp}(\lambda)$$
  $F(x) = 1 - e^{-\lambda x}$  if  $x \ge 0$ 

Proof:

$$F(x) = P(X \le x) = \int_{y=-\infty}^{x} f(y) dy = \int_{y=0}^{x} \lambda e^{-\lambda y} dy$$

$$= \lambda \frac{1}{-\lambda} e^{-\lambda y} \Big|_{0}^{x}$$

$$= -1 (e^{-\lambda x} - e^{-\lambda 0})$$

$$= 1 - e^{-\lambda x}$$

$$\int e^{cx} dx = \frac{1}{c} e^{cx}$$

# PDF/CDF $X \sim \text{Exp}(\lambda = 1)$











Stanford University 35

# Memoryless Property

# Memorylessness: Hurry Up and Wait

A continuous probability distribution is said to be memoryless if a random variable X on that probability distribution satisfies the following for all  $s, t \geq 0$ :

$$P(X \ge s + t \mid X \ge s) = P(X \ge t)$$

- Here, s represents the time you've already spent waiting.
- The above states that after you've waited s time units, the probability you'll need to wait an additional t time units is equal to the probability you'd have to wait t time units without having waited those  $\dot{s}$  time units in the first place.
- Example: If train arrival is guided by a memoryless random variable, the fact that you've waited 15 minutes doesn't obligate the train to arrive any faster!

# Memorylessness: Hurry Up and Wait

A continuous probability distribution is said to be memoryless if a random variable X on that probability distribution satisfies the following for all  $s, t \ge 0$ :

$$P(X \ge s + t \mid X \ge s) = P(X \ge t)$$

Using the definition of conditional probability, we can show that our Exponential distribution exhibits the memoryless property. Just let  $X \sim \text{Exp}(\lambda)$  and trust the math:

$$P(X \ge s + t \mid X \ge s) = \frac{P(X \ge s + t)}{P(X \ge s)} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X \ge t)$$

# Exercises

Major earthquakes (magnitude 8.0+) occur independently on average once every 500 years.\*

What is the probability of zero major earthquakes next year?



Major earthquakes (magnitude 8.0+) occur independently on average once every 500 years.\*

What is the probability of zero major earthquakes next year?

Strategy 1: Exponential RV

#### Define events/RVs & state goal

T: when first earthquake happens

$$T \sim \text{Exp}(\lambda = 0.002)$$

Want: P(T > 1) = 1 - F(1)

#### Solve

$$P(T > 1) = 1 - (1 - e^{-\lambda \cdot 1}) = e^{-\lambda}$$

$$Y \sim \text{Poi}(\lambda)$$
  $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ 

Major earthquakes (magnitude 8.0+) occur independently on average once every 500 years.\*

What is the probability of zero major earthquakes next year?

Strategy 1: Exponential RV

Define events/RVs & state goal

T: when first earthquake happens  $T \sim \text{Exp}(\lambda = 0.002)$ 

Want: P(T > 1) = 1 - F(1)

Solve

$$P(T > 1) = 1 - (1 - e^{-\lambda \cdot 1}) = e^{-\lambda}$$

Strategy 2: Poisson RV

Define events/RVs & state goal

N: # earthquakes next year

$$N \sim \text{Poi}(\lambda = 0.002)$$
  
Want:  $P(N = 0)$   $\lambda : \frac{\text{earthquakes}}{\text{year}}$ 

Solve 
$$P(T > 1) = 1 - (1 - e^{-\lambda \cdot 1}) = e^{-\lambda}$$
  $P(N = 0) = \frac{\lambda^0 e^{-\lambda}}{0!} = e^{-\lambda} \approx 0.998$ 

# Replacing your laptop

$$X \sim \text{Exp}(\lambda)$$
  $E[X] = 1/\lambda$   $F(x) = 1 - e^{-\lambda x}$ 

Let X = # hours of use until your laptop dies.

- X is distributed as an Exponential RV, where
- On average, laptops die after 5000 hours of use.
- You use your laptop 5 hours a day.

What is P(your laptop lasts 4 years)?

# Replacing your laptop

$$X \sim \text{Exp}(\lambda)$$
  $E[X] = 1/\lambda$   
 $F(x) = 1 - e^{-\lambda x}$ 

Let X = # hours of use until your laptop dies.

- X is distributed as an Exponential RV, where
- On average, laptops die after 5000 hours of use.
- You use your laptop 5 hours a day.

What is P(your | aptop | asts 4 years)?

#### Define

X: # hours until laptop death  $X \sim \text{Exp}(\lambda = 1/5000)$ 

Want:  $P(X > 5 \cdot 365 \cdot 4)$ 

#### Solve

$$P(X > 7300) = 1 - F(7300)$$
$$= 1 - (1 - e^{-7300/5000}) = e^{-1.46} \approx 0.2322$$

Better plan ahead if you're co-terming!

5-year plan:

$$P(X > 9125) = e^{-1.825} \approx 0.1612$$

6-year plan:

$$P(X > 10950) = e^{-2.19} \approx 0.1119$$



# Extra

# Expectation of the Exponential

$$X \sim \text{Exp}(\lambda) \ f(x) = \lambda e^{-\lambda x} \ \text{if } x \ge 0$$

$$X \sim \text{Exp}(\lambda)$$

Expectation

$$E[X] = \frac{1}{\lambda}$$

Proof:  

$$E[X] = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{\infty} x\lambda e^{-\lambda x} dx$$

$$= -xe^{-\lambda x}\Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda x} dx$$

$$= -xe^{-\lambda x}\Big|_{0}^{\infty} - \frac{1}{\lambda}e^{-\lambda x}\Big|_{0}^{\infty}$$

$$= [0 - 0] + \left[0 - \left(\frac{-1}{\lambda}\right)\right]$$

$$= \frac{1}{\lambda}$$
Lie Yee Chair Block Makeur School and Jerry Call (25400 MM)

Integration by parts

$$\int x\lambda e^{-\lambda x} dx = \int u \cdot dv$$

$$u = x \qquad dv = \lambda e^{-\lambda x} dx$$

$$du = dx \qquad v = -e^{-\lambda x}$$

$$\int u \cdot dv = u \cdot v - \int v \cdot du$$
$$-xe^{-\lambda x} - \int -e^{-\lambda x} dx$$