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Algorithmic ride sharing
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Probability of k requests from this area in the next 1 minute?

Suppose we know: On average, A = 5 requests per minute
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into 60 seconds:

O(0|1 0] 1 OO0, 0|01
1 2 3 4 5 60
At each second: X ~ Bin(n = 60, p = 5/60)
Independent Bernoulli trial .
You get a request (1) or you don’t (O). 5 5\
g q ().y | (0) P(X=k)=(60)(—) (1__)
Let X = # of requests in minute. N k /\60 60
E[X]=21= @ But what if there are two requests

(" in the same second?
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into 60,000 milliseconds:

1 60,000
At each millisecond: X ~ Bin(n = 60000, p = 1/n)
Independent Bernoulli trial . iy
You get a request (1) or you don’t (O). n\ (A N
0= ()R (-3

Let X = # of requests in minute. N < n n
ElX]=A4= But what if there are two requests
<

in the same millisecond?
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into infinitely small buckets:

omg so small
1 oo
For each time bucket: X ~Bin(n, p = 1/n)
Independent Bernoulli trial , iy .
You get a request (1) or you don’t (0). A N
getarequestib oryou dontOk - p ¥ — k) = lim (Z)(—) (1——)
Let X = # of requests in minute. n-—co n n

ElX]=21= Gnarly math incoming!
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Algorithmic ride sharing
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Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

A% Poisson
. _ - -2
PX=1)=21¢" distribution
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Poisson Random Variable

Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable X is the number of successes over the
experiment duration, assuming the time that each success occurs is
independent and the average # of requests over time is constant.

PMF yL
X~Poi(}) PX=k)=e™—

Expectation E[X] = A

Support: {0,1,2, ...} Variance Var(X) = 4
Examples:
# earthquakes per year Yes, expectation == variance
# server hits per second for Poisson RV! More later.
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X~Poi(4 Ak
Earthquakes E[X]O':( ) P =P

There are an average of 2.79 major earthquakes in the world each year,
and major earthquakes occur independently.

What is the probability of 3 major earthquakes happening next year?
1. Define RVs 03 -

0.25 A
0.2 A

2. Solve

0.15 A

P(X =k)

0.05 A

O 1 2 3 4 5 6 7 8 9 10
Number of earthquakes, k
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Other Discrete
RVs




Grid of random variables

Number of Time until
sSuccesses Success
One trial Ber(p)
{}
S U n=1
everal )
trials Bin (Tl, P)
Interval .
of time Poi (/1) (next week)
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One success

Several
successes

Interval of time to
first success
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Geometric RV

Consider an experiment: independent trials of Ber(p) random variables.
def A Geometric random variable X is the # of trials until the first success.

e P(X=R) = (1-p)Fp
XNGeO(p) Expectation E[X] = %
Support: {1,2, ...} vEEeE Var(X) = 1p—_2p

Examples:
Flipping a coin (P(heads) = p) until first heads appears
Generate bits with P(bit = 1) = p until first 1 generated
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Negative Binomial RV

Consider an experiment: independent trials of Ber(p) random variables.

def A Negative Binomial random variable X is the # of trials until
T SUCCESSES.

PMF oy (k-1 oNk=ToT
X~NegBin(r, p) CP&==(00)a-p
Expectation E [X ] -

Variance P r(1-p)
Var(X) = —;
[%

Support: {r,r + 1, ... }

Examples:

Flipping a coin until rt* heads appears
# of strings to hash into table until bucket 1 has r entries

Geo(p) = NegBin(1,p)
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Grid of random variables

Number of Time until
successes success
One trial Ber(p) Geo(p)
f f
S | Un=1 U r=1
evera . .
trials Bin(n, p) NegBin(r, p)
Interval .
of time POI(/D (next week)
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One success

Several
successes

Interval of time to
first success
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Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

» Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/

RVs & state goal
X~Bin(5,0.1)
X~Po0i(0.5)
X~NegBin(5,0.1)
X~NegBin(1,0.1)
X~Geo(0.1)

X ~some distribution
Want: P(X =5)

moowx*
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Catching Pokemon X~Geo(p) p(k) = (1—p)*p

Wild Pokemon are captured by throwing Pokeballs at them.

» Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/

RVs & state goal
X~Bin(5,0.1)
X~Po0i(0.5)
X~NegBin(5,0.1)
X~NegBin(1,0.1)
X~Geo(0.1)

X ~some distribution
Want: P(X =5)

moowx*
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CS109 Learning Goal: Use new RVs

(0} @ ‘ W Borel distribution - Wikipedia X ‘ +

Let’s say you are learning about servers e G — R ——
a n d n etWO rks . & Notlogged in Talk Contributions Create account Log in

\ 4 4
You read about the M/D/1 queue:

Article  Talk Read Edit View history | Search Wikipedia Q

N’
Borel distribution

WIKIPEDIA
The Free Encyclopedia From Wikipedia, the free encyclopedia
Main page The Borel dlstr:)butlon is a discrete Borel distribution 1\
robability distribution, arising in contexts
A I /l Contents p : y g 9 Parameters ue0,1]
Featured content including branching processes and s A - {1,2,3 }
uppoil n c Dyeen
Current events queueing theory. It is named after the ;:p = ——
. m B 7z
G French mathematician Emile Borel. & cats (in)ias
Donate to Wikipedia n!
Ty ~ . Wikipedia store If the number of offspring that an organism [y, 1
\\ a‘ltlng bCl vice has is Poisson-distributed, and if the -5
A Irtorackon average number of offspring of each Variance I3
ey 8% —_—
rea N() d(, bdp organism is no bigger than 1, then the (1—p)3
About Wikipedia o "
Community portal descendants of each individual will
"T h e Se rVi Ce ti m e b u S e ri O d is Recent changes ultimately become extinct. The number of descendants that an individual ultimately has in that
y p Contact page situation is a random variable distributed according to a Borel distribution.
. . .
distributed as a Borel with parameter
p What links here 1 Definition
n Related changes 2 Derivation and branching process interpretation
— 0 2 Upload file 3 Queueing theory interpretation
L] L Special pages P
Permanent link @ Rl
Page information 5 Borel-Tanner distribution
Wikidata item 6 References
Cite this page 7 External links
Print/export
Create a book Definition [edit)

. .
u Download as PDF
. Printable version A discrete random variable X is said to have a Borel distribution!"?! with parameter u < [0,1] if

the probability mass function of X is given by
Languages o]

and understand experiment setup. s ==y = S

forn=1,2,3 ...
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Exercises

The hardest part of is almost always deciding what
you're modeling and what random variable to use.
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: : : C from: (4
Kickboxing with RVs hoé:f(pr; ) ZZ'&;)

Bin(n, NegBin(7,
How might you model the following? (n.p) gBin(r.p)
# of snapchats you receive in a day

# of children born to the same parents
until the first one with green eyes

If stock went up (1) or down (O) in a day

# of probability problems you try until you
get 5 correct (if you are randomly correct)

# of years since between now and 2050

with more than 6 Atlantic hurricanes
t I
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Kickboxing with RVs

How might you model the following?
# of snapchats you receive in a day

# of children born to the same parents
until the first one with green eyes

If stock went up (1) or down (O) in a day

# of probability problems you try until you
get b correct (if you are randomly correct)

# of years since between now and 2050
with more than 6 Atlantic hurricanes

Note: These exercises are designed to build intuition; in a
problem statement, you'll generally be given more detail.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024

Choose from: Poi(1)

Ber(p) Geo(p)
Bin(n, p) NegBin(r, p)
Poi(A)

Geo(p) or E. NegBin(1, p)

Ber(p) or B. Bin(1, p)
NegBin(r = 5,p)

Bin(n = 27,p), where
p = P(= 6 hurricanes in a year)
calculated from C. Poi(4)

Stanford University 21



Poisson Random Variable

PMF Al
X~Poi(1) PX =k =e™

Expectation E[X] = A .
Support: {0,1, 2, ...} Variance Var(X) = 4

In CS109, a Poisson RV X~Poi(4) most often models

# of successes in a fixed interval of time, where successes are independent
A = E|X], average success/interval

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 22



X~Poi(4 Ak
1. Web server load E[X]O':( ) P =P

Consider requests to a web server in 1 second.

* In the past, server load averages 2 hits/second, where requests arrive independently.
* Let X = # requests the server receives in a second.

What is P(X < 5)?

Define RVs Solve

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 23



Poisson Random Variable

PMF Al
X~Poi(4) PX =k =e™

Expectation E[X] = A .
Support: {0,1,2, ...} Variance Var(X) = 4

In CS109, a Poisson RV X~Poi(4) most often models

Approximation of Y~Bin(n,p) where n is large and p is small.
A=E[Y] =np
Approximation works well even when trials not entirely independent.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 24



2. DNA

All the movies, images,
emails and other digital
data from more than
600 smartphones
(10,000 GB) can be
stored in the faint pink
smear of DNA at the end
of this test tube.

What is the probability
that DNA storage stays
uncorrupted?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 25



DNA

What is the probability that DNA storage stays uncorrupted?
In DNA (and real networks), we store large strings.
Let string length be long, e.g., n ~ 10*
Probability of corruption of each base pair is very small, e.g., p = 107°
Let X = # of corruptions.

What is P(DNA storage is uncorrupted) = P(X = 0)?

Approach 1: Approach 2:
X~Bin(n = 10%,p = 107°) X~Poi(1 = 104]-{10—6 = 0.010)
A 0.01
P(X =k) =} )p*(1 - p)n PX=l)=et =01
| _ (10*\ 1 0=6:071 _ 10—6110%—0 = 001 i,,‘
ety 4.= (1) )107°°(1 - 107%) oot OB

~ 0.990049829 ~ 0.990049834 approximation!
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When is a Poisson approximation appropriate?

k n—=k

oy (A A Under which conditions will
PX =1 = lim (k) (77) (1 B E) - X~Bin(n,p) behave like
o N Poi(1), where A = np?
= lim
Seonkn — ) k! K Large n, large p
e nt(n = k) (1 —%) Small n, small p
. Y Large n, small p
— lim nn—1)-m—-k+1) (n—k)! 4 e Small n, large p
- noo nk (n —k)! k! N Other
n
(1-%)
nk Ak et
= lim

| . .
k . Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford UI'llVCI'Slty 27



X~Poi(4) Y~Bin(n, p)

Poisson approximation e S
Poisson approximates Binomial 0.3 - |
when n is large, p is small, and 0.25 | " Bin(10,0.3
A = np is "moderate”. o | 1 lim = Bin(100,0.09)
= Bin(1000,0.003)
. . ) [ i Poi(3)
Different interpretations of s 0.15 BPo
"moderate": 0.1 -
*n>20andp < 0.05 0.05 - H H
- n>100andp < 0.1 oJI LI LW LR II | E—
o 1 2 3 4 5 6 7 8 9 10
X=k

Poisson is Binomial in the limit:
* A =np,wheren - co,p - 0
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Poisson Random Variable

Expectation E[X] = A
Variance Var(X) = 4

Time to show intuition for why
expectation == variance!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 29



Properties of Poi(A1) with the Poisson paradigm

Recall the Binomial:

Y~Bin(n,p)

Expectation E[Y] = np
Variance Var(Y) = np(1 —p)

Consider X~Poi(1), where A = np (n = oo,p = 0):

X"’POi(/l) Expectation E[X] = A
Variance Var(X) = A

Proof:
ElX]=np=41
Var(X) =np(1—p) > A(1-0) =1

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024 Stanford University 30



Poisson Approximation, approximately

Poisson can still provide a good approximation of the Binomial,
even when assumptions are "mildly" violated.

You can apply the Poisson approximation when:

"Successes" in trials are not entirely independent &
e.g., # entries in each bucket in large hash table.

Probability of "success" in each trial varies (slightly),
like a small relative change in a very small p

e.g., average # requests to web server/sec may fluctuate
slightly due to load on network

R— 4

We won’t explore this too much, but we
want you to know about it anyway.
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Can these Binomial RVs be approximated?

0.1 -
Poisson approximates Binomial _ . | #Bin(109.0.5
when n is large, p is small, and ! ”HH HH
A = np is "moderate" Lz ot
) 0O 10 20 30 40 50 60 70 80 90
Different interpretations of 03 1 _
"mOderate". _ 0.2 - ® Bin(100,0.04)
- ~
0.1 -
© n>20andp < 0.05 L .||Hh||
Q_‘ I| T T T T T T T
*n>100andp < 0.1 0 10 20 30 40 50 60 70 80 90
. . . . . . 0.3 H
Poisson is Binomial in the limit: 5 | = Bin(100,0.96)
_ I '
* A =np,wheren - co,p =0 < 01 ”H‘
O T T T T T T T T IlII I|I

O 10 20 30 40 50 60 70 80 90
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Can these Binomial RVs be approximated?

0.1 H

Poisson approximates Binomial = 0.05 -

when n is large, p is small, and ! u||||\“““|“
. il

X
| “““““l“,d.nJ“...,

m Bin(100,0.5)
® Poi(50)

A = np is "moderate". S
O 10 20 30 40 50 60 70 80 90
Different interpretations of 03 1 (= BNL00.0.04)
“moderate”: < 027 4 L= Poia)
0.1 -
*n>20andp <0.05 < .||“|““|||.|
Q.‘ T T T T T T T T
*n>100andp < 0.1 10 20 30 40 50 60 70 80 90
. . . . . .. 0.3 -
Poisson is Binomial in the limit: Can approximate ] |®Bin(100,0.96) = Poi(4)
0.2 911" Bin(100,1-0.96)

<

. _ [
A =np,wheren - co,p - 0 E’ 0_1_|‘H‘
||

0

10 20 30 40 50 ©0 70 80 90
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