2 Variance

9 Properties of Variance
16 Bernoulli RV
19 Binomial RV
29 Exercises

07: Variance,
 Bernoulli, Binomial
 Jerry Cain
 January 24, 2024

Lecture Discussion on Ed

Variance

Average temperatures

> Stanford, CA
> $E[$ high $]=68^{\circ} \mathrm{F}$
> $E[$ low $]=52^{\circ} \mathrm{F}$

Is $E[X]$ enough? Does is capture everything?

Average temperatures

> Stanford, CA
> $E[$ high $]=68^{\circ} \mathrm{F}$
> $E[$ low $]=52^{\circ} \mathrm{F}$

Stanford high temps

Washington, DC
$E[$ high $]=67^{\circ} \mathrm{F}$

$$
E[\mathrm{low}]=51^{\circ} \mathrm{F}
$$

Washington high temps

Normalized histograms are approximations of probability mass functions, i.e., PMFs.

Variance = measure of "spread"

Consider the following three distributions (PMFs):

- Expectation: $E[X]=3$ for all distributions
- But the shape and spread across distributions are very different!
- Variance, $\operatorname{Var}(X)$: a formal quantification of spread

Variance

The variance of a random variable X with mean $E[X]=\mu$ is

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]
$$

- Also written as: $E\left[(X-E[X])^{2}\right]$
- Note: $\operatorname{Var}(X) \geq 0$
- Other names: $\mathbf{2}^{\text {nd }}$ central moment, or square of the standard deviation

	$\operatorname{Var}(X)$		
def standard deviation	$\operatorname{SD}(X)=\sqrt{\operatorname{Var}(X)}$	\quad	Units of X^{2}
:---			

Variance of Stanford weather

$$
\begin{array}{ll}
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right] & \begin{array}{l}
\text { Variance } \\
\text { of } X
\end{array}
\end{array}
$$

Stanford, CA
$E[$ high $]=68^{\circ} \mathrm{F}$
$E[$ low $]=52^{\circ} \mathrm{F}$
Stanford high temps

Variance $E\left[(X-\mu)^{2}\right]$	$=39\left({ }^{\circ} \mathrm{F}\right)^{2}$
Standard deviation	$=6.2{ }^{\circ} \mathrm{F}$

Comparing variance

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right] \quad \begin{array}{ll}
\text { Variance } \\
\text { of } X
\end{array}
$$

Stanford, CA
$E[$ high $]=68^{\circ} \mathrm{F}$

Stanford high temps

Washington, DC
$E[$ high $]=67^{\circ} \mathrm{F}$

Washington high temps

Properties of Variance

Properties of variance

Definition $\quad \operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]$
Units of X^{2}
def standard deviation $\quad \operatorname{SD}(X)=\sqrt{\operatorname{Var}(X)}$
Units of X

Property 1
$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$
Property 2
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

- Property 1 is often easier to manipulate than the original definition
- Unlike expectation, variance is not linear

Properties of variance

Definition $\quad \operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]$
def standard deviation $\quad \mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}$

Property $1 \quad \operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$
Property 2
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Units of X^{2}
Units of X

Computing variance, a proof

$$
\begin{array}{rlrl}
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right] & \text { Variance } \\
& =E\left[X^{2}\right]-(E[X])^{2} \text { of } X
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[(X-\mu)^{2}\right] \quad \text { Let } E[X]=\mu \\
&=\sum_{x}(x-\mu)^{2} p(x) \\
&=\sum_{x}\left(x^{2}-2 \mu x+\mu^{2}\right) p(x) \\
&=\sum_{x}^{x} x^{2} p(x)-2 \mu \sum_{x} x p(x)+\mu^{2} \sum_{x} p(x) \\
& \text { Everyone, } \\
& \text { vease } \\
& \text { come } \\
& \text { second } \\
& \text { moment! }=E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} \cdot 1 \\
&\left.=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2}\right]-\mu^{2} \\
&=E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

Variance of a 6-sided die

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right] & & \text { Variance } \\
& =E\left[X^{2}\right]-(E[X])^{2} & & \text { of } X
\end{aligned}
$$

Let $\mathrm{Y}=$ outcome of a single die roll. Recall $E[Y]=7 / 2$. Calculate the variance of Y .

1. Approach \#1: Definition

$$
\begin{aligned}
& \operatorname{Var}(Y)=\frac{1}{6}\left(1-\frac{7}{2}\right)^{2}+\frac{1}{6}\left(2-\frac{7}{2}\right)^{2} \quad E\left[Y^{2}\right]=\frac{1}{6}\left[1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right] \\
& +\frac{1}{6}\left(3-\frac{7}{2}\right)^{2}+\frac{1}{6}\left(4-\frac{7}{2}\right)^{2} \\
& +\frac{1}{6}\left(5-\frac{7}{2}\right)^{2}+\frac{1}{6}\left(6-\frac{7}{2}\right)^{2} \\
& =35 / 12 \\
& \text { = 91/6 } \\
& \operatorname{Var}(Y)=91 / 6-(7 / 2)^{2} \\
& =35 / 12
\end{aligned}
$$

Properties of variance

Definition $\quad \operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]$
def standard deviation $\quad \mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}$

Property 1
Property 2
$\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Units of X^{2}
Units of X

Property 2: A proof

Property $2 \quad \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Proof: $\operatorname{Var}(a X+b)$

$$
\begin{array}{ll}
=E\left[(a X+b)^{2}\right]-(E[a X+b])^{2} & \text { Property } 1 \\
=E\left[a^{2} X^{2}+2 a b X+b^{2}\right]-(a E[X]+b)^{2} & \\
\left.=a^{2} E\left[X^{2}\right]+2 a b E[X]+b^{2}-\left(a^{2}(E[X])^{2}+2 a b E[X]+b^{2}\right)\right] \\
=a^{2} E\left[X^{2}\right]-a^{2}(E[X])^{2} & \begin{array}{l}
\text { Factoring/ } \\
\text { Linearity of } \\
\text { Expectation }
\end{array} \\
=a^{2}\left(E\left[X^{2}\right]-(E[X])^{2}\right) & \\
=a^{2} \operatorname{Var}(X) & \text { Property 1 }
\end{array}
$$

Bernoulli RV

Bernoulli Random Variable

Consider an experiment with two outcomes: "success" and "failure". def A Bernoulli random variable X maps "success" to 1 and "failure" to 0 . Other names: indicator random variable, Boolean random variable

	PMF	$P(X=1)=p(1)=p$
$X \sim \operatorname{Ber}(p)$		$P(X=0)=p(0)=1-p$
	Expectation	$E[X]=p$
Support: $\{0,1\}$	Variance	$\operatorname{Var}(X)=p(1-p)$

Examples:

- Coin flip
- Random binary digit
- Whether Doris barks

Defining Bernoulli RVs

$$
\begin{array}{ll}
X \sim \operatorname{Ber}(p) & p_{X}(1)=p \\
E[X]=p & p_{X}(0)=1-p
\end{array}
$$

Run a program

- Crashes w.p. p
- Works w.p. $1-p$

Let X : 1 if crash
$X \sim \operatorname{Ber}(p)$
$P(X=1)=p$
$P(X=0)=1-p$

Serve an ad.

- User clicks w.p. 0.2
- Ignores otherwise

Let X : 1 if clicked

$$
\begin{array}{r}
X \sim \operatorname{Ber}(—) \\
P(X=1)=- \\
P(X=0)=-
\end{array}
$$

$X \sim \operatorname{Ber}(\ldots)$

Stanford University

- Success: roll a 10
- Failure: anything else

Let $X: 1$ if success

Binomial RV

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

$$
\begin{array}{lll}
X \sim \operatorname{Bin}(n, p) & & k=0,1, \ldots, n: \\
& \begin{array}{ll}
\text { Expectation } & \\
& E[X]=n p
\end{array} \\
\text { Support: }\{0,1, \ldots, n\} & \text { Variance } & \operatorname{Var}(X)=n p(1-p)
\end{array}
$$

Examples:

- \# heads in n coin flips
- \# of 1's in randomly generated length n bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Reiterating notation

The parameters of a Binomial random variable:

- n : number of independent trials
- p : probability of success on each trial

Reiterating notation

$$
X \sim \operatorname{Bin}(n, p)
$$

If X is a binomial with parameters n and p, the PMF of X is

Three coin flips

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Three fair (with $p=0.5$) coins are flipped.

- X is number of heads
- $X \sim \operatorname{Bin}(3,0.5)$

Compute the following event probabilities:

$$
\begin{aligned}
& P(X=0) \\
& P(X=1) \\
& P(X=2) \\
& P(X=3) \\
& P(X=7) \\
& P(\text { event })
\end{aligned}
$$

Three coin flips

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Three fair (with $p=0.5$) coins are flipped.

- X is number of heads
- $\quad X \sim \operatorname{Bin}(3,0.5)$

Compute the following event probabilities:

$$
\begin{array}{ll}
P(X=0)=p(0) & =\binom{3}{0} p^{0}(1-p)^{3}=\frac{1}{8} \\
P(X=1)=p(1) & =\binom{3}{1} p^{1}(1-p)^{2}=\frac{3}{8} \\
P(X=2)=p(2) & =\binom{3}{2} p^{2}(1-p)^{1}=\frac{3}{8} \\
P(X=3)=p(3) & =\binom{3}{3} p^{3}(1-p)^{0}=\frac{1}{8} \\
P(X=7)=p(7) & =0
\end{array}
$$

Extra math note:
By Binomial Theorem, we can prove $\sum_{k=0}^{n} P(X=k)=1$

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

```
PMF }\quadk=0,1,\ldots,n
    P(X=k) =p(k)=( (\begin{array}{l}{n}\\{k}\end{array})\mp@subsup{p}{}{k}(1-p\mp@subsup{)}{}{n-k}
    Expectation E[X]=np
    Range: {0,1,\ldots,n} Variance Var(X)=np(1-p)
```


Examples:

- \# heads in n coin flips
- \# of 1's in randomly generated length n bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Binomial RV is sum of Bernoulli RVs

Bernoulli

- $X \sim \operatorname{Ber}(p)$

Binomial

- $Y \sim \operatorname{Bin}(n, p)$
- The sum of n independent Bernoulli RVs

$$
Y=\sum_{i=1}^{n} X_{i}, \quad X_{i} \sim \operatorname{Ber}(p)
$$

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

	PMF	$k=0,1, \ldots, n:$
		$P(X=k)=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
Range: $\{0,1, \ldots, n\}$	Expectation	$E[X]=n p$
	Variance	$\operatorname{Var}(X)=n p(1-p)$

Examples:

- \# heads in n coin flips
- \# of 1's in randomly generated length n bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Binomial Random Variable

Consider an experiment: n independent trials of $\operatorname{Ber}(p)$ random variables. def A Binomial random variable X is the number of successes in n trials.

```
PMF
X~Bin}(n,p
Range: \(\{0,1, \ldots, n\} \quad\) Variance
Examples:
- \# heads in n coin flips
- \# of 1's in randomly generated length \(n\) bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)
```

Exercises

Statistics: Expectation and variance

1. a. Let $X=$ the outcome of a fair 24-sided die roll. What is $E[X]$?
b. Let $Y=$ the sum of seven rolls of a fair 24-sided die. What is $E[Y]$?
2. Let $Z=\#$ of tails on 10 flips of a biased coin, with $\mathrm{p}=0.71$. What is $E[Z]$?
3. Compare the variances of $B_{0} \sim \operatorname{Ber}(0.0), B_{1} \sim \operatorname{Ber}(0.1)$, $B_{2} \sim \operatorname{Ber}(0.5)$, and $B_{3} \sim \operatorname{Ber}(0.9)$.

Statistics: Expectation and variance

1. a. Let $X=$ the outcome of a fair 24-sided die roll. What is $E[X]$?
b. Let $Y=$ the sum of seven rolls of a fair 24 -sided die. What is $E[Y]$?
2. Let $Z=\#$ of tails on 10 flips of a biased coin, with $\mathrm{p}=0.71$. What is $E[Z]$?
3. Compare the variances of $B_{0} \sim \operatorname{Ber}(0.0), B_{1} \sim \operatorname{Ber}(0.1)$,
$B_{2} \sim \operatorname{Ber}(0.5)$, and $B_{3} \sim \operatorname{Ber}(0.9)$.

Visualizing Binomial PMFs

$$
\begin{array}{cc}
E[X]=n p \\
X \sim \operatorname{Bin}(n, p) & p(i)=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{array}
$$

Visualizing Binomial PMFs

$$
\begin{gathered}
E[X]=n p \\
X \sim \operatorname{Bin}(n, p) \quad p(i)=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{gathered}
$$

Match the distribution of X to the graph:

1. $\operatorname{Bin}(10,0.5)$
2. $\operatorname{Bin}(10,0.3)$
3. $\operatorname{Bin}(10,0.7)$
4. $\operatorname{Bin}(5,0.5)$

Galton Board

Galton Board

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

When a marble hits a pin, it has an equal chance of going left or right.

Let $B=$ the bucket index a ball drops into. What is the distribution of B ?

Galton Board

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

When a marble hits a pin, it has an equal chance of going left or right.

Let $B=$ the bucket index a ball drops into. What is the distribution of B ?

- Each pin is an independent trial
- One decision made for level $i=1,2, . ., 5$
- Consider a Bernoulli RV with success R_{i} if ball went right on level i
- Bucket index $B=$ \# times ball went right

$$
B \sim \operatorname{Bin}(n=5, p=0.5)
$$

Galton Board

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

When a marble hits a pin, it has an equal chance of going left or right.

Let $B=$ the bucket index a ball drops into. B is distributed as a Binomial RV,

$$
B \sim \operatorname{Bin}(n=5, p=0.5)
$$

$$
P(B=0)=\binom{5}{0} 0.5^{5} \approx 0.03
$$

$$
P(B=1)=\binom{5}{1} 0.5^{5} \approx 0.16
$$

$$
P(B=2)=\binom{5}{2} 0.5^{5} \approx 0.31
$$

PMF of Binomial RV!

Genetics and NBA Finals

$$
X \sim \operatorname{Bin}(n, p) \quad p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

1. Each parent has 2 genes per trait (e.g., eye color).

- Child inherits 1 gene from each parent with equal likelihood.
- Brown eyes are "dominant", blue eyes are "recessive":
- Child has brown eyes if either or both genes for brown eyes are inherited.
- Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
- Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.

Two parents have 4 children. What is P(exactly 3 children have brown eyes)?
2. Let's speculate that the Boston Celtics will play the Milwaukee Bucks in a 7-game series during the 2024 NBA finals.

- The Celtics have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).

What is P (Celtics winning)?

Genetic inheritance

1. Each parent has 2 genes per trait (e.g., eye color).

- Child inherits 1 gene from each parent with equal likelihood.

- Brown eyes are "dominant", blue eyes are "recessive":
- Child has brown eyes if either or both genes for brown eyes are inherited.
- Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
- Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes. Two parents have 4 children. What is P(exactly 3 children have brown eyes)?

Big Q: Fixed parameter or random variable?

Parameters

Random variable What differentiates our event from the rest of the sample space?

Genetic inheritance

1. Each parent has 2 genes per trait (e.g., eye color).

- Child inherits 1 gene from each parent with equal likelihood.

- Brown eyes are "dominant", blue eyes are "recessive":
- Child has brown eyes if either or both genes for brown eyes are inherited.
- Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
- Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.

Two parents have 4 children. What is P (exactly 3 children have brown eyes)?

```
1. Define events/
        RVs \& state goal
```

2. Identify known probabilities
```
3. Solve
X: \# brown-eyed children, \(X \sim \operatorname{Bin}(4, p)\)
\(p: P\) (brown-eyed child)
Want: \(P(X=3)\)
```


NBA Finals

Let's speculate: the Boston Celtics will play the Milwaukee Bucks in a 7 -game series during the 2024 NBA finals.

- The Celtics have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).
What is P (Celtics winning)?

1. Define events/ RVs \& state goal

X: \# games Celtics win $X \sim \operatorname{Bin}(7,0.58)$

Want:

Big Q: Fixed parameter or random variable?

Parameters	\# of total games
prob Celtics winning a game	

Random variable \# of games Boston Celtics win

Event based on RV

NBA Finals

Let's speculate: the Boston Celtics will play the Milwaukee Bucks in a 7 -game series during the 2024 NBA finals.

- The Celtics have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).
What is P (Celtics winning)?

1. Define events/ RVs \& state goal

X: \# games Celtics win $X \sim \operatorname{Bin}(7,0.58)$

Want: $P(X \geq 4)$
2. Solve
$P(X \geq 4)=\sum_{k=4}^{7} P(X=k)=\sum_{k=4}^{7}\binom{7}{k} 0.58^{k}(0.42)^{7-k}$
Cool Algebra/Probability Fact: this is identical to the probability of winning if we define winning $=$ first to win 4 games

