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Conditional	Paradigm
For any events A, B, and E, you can condition consistently on E,

and all formulas still hold:

Axiom 1       0 ≤ 𝑃 𝐴 𝐸 ≤ 1
Corollary 1 (complement)   𝑃 𝐴 𝐸 = 1 − 𝑃 𝐴!|𝐸
Transitivity      𝑃 𝐴𝐵 𝐸 = 𝑃(𝐵𝐴|𝐸)
Chain Rule      𝑃 𝐴𝐵 𝐸 = 𝑃(𝐵|𝐸)𝑃 𝐴 𝐵𝐸

Bayes’ Theorem     

3

𝑃 𝐴 𝐵𝐸 =
𝑃 𝐵 𝐴𝐸 𝑃 𝐴|𝐸

𝑃(𝐵|𝐸) ‘s theorem?
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Conditional	Independence
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Two events 𝐴 and 𝐵 are defined as conditionally independent given 𝐸 if:

𝑃 𝐴𝐵|𝐸 = 𝑃 𝐴|𝐸 𝑃(𝐵|𝐸)

An equivalent definition:

A.  𝑃 𝐴 𝐵 = 𝑃 𝐴
B.  𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴
C.  𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴|𝐸

𝑃 𝐸|𝐹 = 𝑃(𝐸)
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)Independent

events 𝐸 and 𝐹
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Conditional	Independence
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Two events 𝐴 and 𝐵 are defined as conditionally independent given 𝐸 if:

𝑃 𝐴𝐵|𝐸 = 𝑃 𝐴|𝐸 𝑃(𝐵|𝐸)

An equivalent definition:

A.  𝑃 𝐴 𝐵 = 𝑃 𝐴
B.  𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴
C.  𝑃 𝐴 𝐵𝐸 = 𝑃 𝐴|𝐸

𝑃 𝐸|𝐹 = 𝑃(𝐸)
𝑃 𝐸𝐹 = 𝑃 𝐸 𝑃(𝐹)Independent

events 𝐸 and 𝐹

E is the "new sample space", 
so left and right side must 
both be conditioned on E.
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Netflix	and	Condition
Let 𝐸 = a user watches Life is Beautiful.
Let 𝐹 = a user watches Amelie.
What is 𝑃 𝐸 ?

𝑃 𝐸 ≈ # people who have watched movie
# people on Netflix = $%,'(),'($

*%,+'(,$'(
≈ 0.20

What is the probability that a user watches
Life is Beautiful, given they watched Amelie?

  𝑃 𝐸|𝐹 = 

 
6

𝑃 𝐸𝐹
𝑃(𝐹)

=
# people who have watched both

# people who have watched Amelie
≈ 0.42

Review
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Netflix	and	Condition

Let 𝐸 be the event that a user watches the given movie.
Let 𝐹 be the event that the same user watches Amelie.
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𝑃 𝐸 = 0.19 𝑃 𝐸 = 0.32 𝑃 𝐸 = 0.20 𝑃 𝐸 = 0.20𝑃 𝐸 = 0.09

𝑃 𝐸|𝐹 = 0.14 𝑃 𝐸|𝐹 = 0.35 𝑃 𝐸|𝐹 = 0.20 𝑃 𝐸|𝐹 = 0.72 𝑃 𝐸|𝐹 = 0.42

Independent!

Review
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What if 𝐸$𝐸'𝐸(𝐸)	are not independent? (e.g., all international emotional comedies)

Watched: Will they 
watch?

𝐸( 𝐸) 𝐸* 𝐸+

Netflix	and	Condition	(on	many	movies)
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𝑃 𝐸)|𝐸$𝐸'𝐸( =

We need to keep track of an exponential number of movie-watching statistics

𝑃 𝐸$𝐸'𝐸(𝐸)
𝑃 𝐸$𝐸'𝐸(

=
# people who have watched all 4

# people who have watched those 3
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Netflix	and	Condition	(on	many	movies)

Assume: 𝐸$𝐸'𝐸(𝐸)	are conditionally independent given 𝐾

9

Watched: Will they 
watch?

𝐸( 𝐸) 𝐸* 𝐸+

𝐾: likes international emotional comedies

𝑃 𝐸)|𝐸$𝐸'𝐸(𝐾 = 𝑃 𝐸)|𝐾
𝑃 𝐸)|𝐸$𝐸'𝐸( =

𝑃 𝐸$𝐸'𝐸(𝐸)
𝑃 𝐸$𝐸'𝐸( An easier probability to store and compute!
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Dependent events can be conditionally independent.
(And vice versa: Independent events can be conditionally dependent.)

Netflix	and	Condition

10

𝐸( 𝐸) 𝐸* 𝐸+

𝐾: likes international emotional comedies

𝐸$𝐸'𝐸(𝐸)	are
dependent

𝐸$𝐸'𝐸(𝐸)	are
conditionally independent 

given 𝐾

Challenge: How 
do we determine 
𝐾? Stay tuned in 
6 weeks’ time!



Random	
Variables
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Random variables are like typed 
variables (with uncertainty)

int a = 5;

double b = 4.2;

bit c = 1;

𝐴 is the number of Pokemon we 
bring to our future battle.

𝐴 ∈ 1, 2, … , 6

𝐵 is the amount of money we get 
after we win a battle.

𝐵 ∈ ℝ,

𝐶 is 1 if we successfully beat the 
Elite Four. 0 otherwise.

𝐶 ∈ {0,1}

12

Random	variables	are	like	typed	variables

type name value

Random 
variablesCS variables
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Random	Variable
A random variable is a real-valued function defined on a sample space.
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Experiment 𝑋 = 𝑘

2. What is the event (set of outcomes) where 𝑋 = 2?

Outcome

Example:

 3 coins are flipped.
 Let 𝑋 = # of heads.
 𝑋 is a random variable.

1. What is the value of 𝑋 for the outcomes:
• (T,T,T)?
• (H,H,T)?

3. What is 𝑃 𝑋 = 2 ?
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Random	Variable
A random variable is a real-valued function defined on a sample space.
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Experiment 𝑋 = 𝑘

2. What is the event (set of outcomes) where 𝑋 = 2?

Outcome

1. What is the value of 𝑋 for the outcomes:
• (T,T,T)?
• (H,H,T)?

3. What is 𝑃 𝑋 = 2 ?

Example:

 3 coins are flipped.
 Let 𝑋 = # of heads.
 𝑋 is a random variable.
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Random	variables	are	NOT	events!
It is confusing that random variables and events use the same notation.
• Random variables ≠ events.
• We can define an event to be a particular assignment of a random 

variable, or more generally, in terms of a random variable.

15

event

𝑋 = 2
probability

(number b/t 0 and 1)

𝑃(𝑋 = 2)

Example:

 3 coins are flipped.
 Let 𝑋 = # of heads.
 𝑋 is a random variable.
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Random	variables	are	NOT	events!
It is confusing that random variables and events use the same notation.
• Random variables ≠ events.
• We can define an event to be a particular assignment of a random 

variable, or more generally, in terms of a random variable.

16

Example:

 3 coins are flipped.
 Let 𝑋 = # of heads.
 𝑋 is a random variable.

𝑋 = 𝟏 {(H, T, T), (T, H, T), 
(T, T, H)}

3/8

𝑋 = 𝟐 {(H, H, T), (H, T, H), 
(T, H, H)}

3/8

𝑋 = 𝟑 {(H, H, H)} 1/8
𝑋 ≥ 4 { } 0

𝑋 = 𝑥 Set of outcomes 𝑃 𝑋 = 𝑘
𝑋 = 𝟎 {(T, T, T)} 1/8



PMF/CDF
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So	far
3 coins are flipped. Let 𝑋 = # of heads. 𝑋 is a random variable.

18

Experiment 𝑋 = ___Outcome
(flip __ heads) 𝑃 𝑋 = 	 ___	

Can we get a "shorthand" for 
this last step?

Seems like it might be useful!
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Probability	Mass	Function
3 coins are flipped. Let 𝑋 = # of heads. 𝑋 is a random variable.

19

𝑃(𝑋 = 𝑘)
return value/output
number between
0 and 1

parameter/input 𝑘

A function on 𝑘 
with range [0,1]

What would be a useful function to define?
The probability of the event that a random variable 𝑋 takes on the value 𝑘!

For discrete random variables, this is a probability mass function.
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Probability	Mass	Function
3 coins are flipped. Let 𝑋 = # of heads. 𝑋 is a random variable.

20

𝑃(𝑋 = 2)

2

0.375
return value/output:
probability of the event

𝑋 = 2

parameter/input 𝑘:
a value of 𝑋

 def prob_x(n, k, p):
   n_ways = math.comb(n, k)
   p_way = p ** k * (1 – p) ** (n - k)
   return n_ways * p_way

A function on 𝑘 
with range [0,1]

probability mass function
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A random variable 𝑋	is discrete if it can take on countably many values.
• 𝑋 = 𝑥, where 𝑥 ∈ 𝑥$, 𝑥', 𝑥(, …

The probability mass function (PMF) of a discrete random variable is
𝑃 𝑋 = 𝑥 	

• Probabilities must sum to 1: 
This last point is a good 
way to verify any PMF 

you create is valid

Discrete	RVs	and	Probability	Mass	Functions

21

>
89$

:

𝑝 𝑥8 = 1

shorthand notation

= 𝑝 𝑥 = 𝑝4(𝑥)
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PMF	for	a	single	6-sided	die

Let 𝑋 be a random variable that 
represents the result of a single
dice roll.

• Support of 𝑋	: 1, 2, 3, 4, 5, 6
• Therefore, 𝑋	is a discrete

random variable.
• PMF of X:

𝑝 𝑥 = B	 1/6	 𝑥 ∈ {1, … , 6}
0	 otherwise

22

1/6

1 2 3 4 5 6
0

𝑋 = 𝑥
𝑃
𝑋
=
𝑥
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Cumulative	Distribution	Functions

For a random variable 𝑋, the cumulative distribution function (CDF) is 
defined as

𝐹 𝑎 = 𝐹? 𝑎 = 𝑃 𝑋 ≤ 𝑎 ,where −∞ < 𝑎 < ∞

For a discrete RV 𝑋, the CDF is:

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = >
all @AB

𝑝(𝑥)

23
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Let 𝑋 be a random variable that 
represents the result of a single 
dice roll.

24

1/6

1 2 3 4 5 60

𝑋 = 𝑥

𝑃
𝑋
=
𝑥

CDFs	as	graphs
CDF (cumulative 

distribution function) 𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎

𝐹
𝑎

𝑋 = 𝑥

5/6

4/6

3/6

2/6

1/6

PMF of 𝑋

CDF of 𝑋

𝑃 𝑋 ≤ 0 = 0

𝑃 𝑋 ≤ 6 = 1



Expectation
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Discrete	random	variables

26

Discrete 
Random 

Variable, 𝑋

Experiment 
outcomes

PMF
𝑃 𝑋 = 𝑥 = 𝑝(𝑥)

Definition

Properties

Support

CDF 𝐹 𝑥

Without performing the experiment:
• The support tells us which values 

our random variable might produce
• Next up: How do we report the 

"average" value?
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Expectation

The expectation of a discrete random variable 𝑋 is defined as:

𝐸 𝑋 = 6
6:8 6 9:

𝑝 𝑥 ⋅ 𝑥

• Note: sum over all values of 𝑋 = 𝑥 that have non-zero probability.

• Other names: mean, expected value, weighted average,
   center of mass, first moment

27
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Expectation	of	a	die	roll

What is the expected value of a 6-sided die roll?

28

Expectation 
of 𝑋

𝐸 𝑋 = E
!:# ! $%

𝑝 𝑥 ⋅ 𝑥

1. Define random 
variables

2. Solve

𝑃 𝑋 = 𝑥 = B	 1/6	 𝑥 ∈ {1, … , 6}
0	 otherwise

𝑋 = RV for value of roll

𝐸 𝑋 = 1
1
6
+ 2

1
6
+ 3

1
6
+ 4

1
6
+ 5

1
6
+ 6

1
6

=
7
2
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Important	properties	of	expectation
1. Linearity:

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

2. Expectation of a sum = sum of expectation:

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

3. Unconscious statistician:

𝐸 𝑔 𝑋 =)
$

𝑔 𝑥 𝑝(𝑥)

29

• Let 𝑋 = 6-sided dice roll,
      𝑌 = 2𝑋 − 1.

• 𝐸 𝑋 = 3.5
• 𝐸 𝑌 = 6

Sum of two dice rolls:
• Let 𝑋 = roll of die 1

      𝑌 = roll of die 2
• 𝐸 𝑋 + 𝑌 = 3.5 + 3.5 = 7

These properties let you avoid 
defining difficult PMFs.
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Linearity	of	Expectation	proof

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

Proof:

𝐸 𝑎𝑋 + 𝑏 =>
@

𝑎𝑥 + 𝑏 𝑝 𝑥 =>
@

𝑎𝑥𝑝 𝑥 + 𝑏𝑝 𝑥

	= 𝑎>
@

𝑥𝑝(𝑥) + 𝑏>
@

𝑝 𝑥 	

= 𝑎	𝐸 𝑋 + 𝑏 ⋅ 1	

30

𝐸 𝑋 = $
!:# ! $%

𝑝 𝑥 ⋅ 𝑥
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Expectation	of	Sum	intuition

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

31

we’ll prove this in a 
few lectures

𝑋 𝑌 𝑋 + 𝑌
3 6 9

2 4 6

6 12 18

10 20 30

-1 -2 -3

0 0 0

8 16 24

(
/
	(28)

Average:
1
𝑛E
&'(

)

𝑥&
1
𝑛E
&'(

)

𝑦&
1
𝑛E
&'(

)

𝑥& + 𝑦&

Intuition 
for now:

+ =

+ =(
/
	(56) (

/
	(84)

𝐸 𝑋 = $
!:# ! $%

𝑝 𝑥 ⋅ 𝑥
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LOTUS	proof

32

Let 𝑌 = 𝑔(𝑋), where 𝑔 is a real-valued function.

𝐸 𝑔 𝑋 = 𝐸 𝑌 = 	>
K

𝑦K𝑝(𝑦K)

= 	?
0

𝑦0 ?
1:3 4! 5	7"

𝑝(𝑥1)

= 	?
0

?
1:3 4! 5	7"

𝑦0 	𝑝(𝑥1)

= 	?
0

?
1:3 4! 5	7"

𝑔(𝑥1)	𝑝(𝑥1)

=>
8

𝑔(𝑥8)	𝑝(𝑥8)

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑋 =E
!

𝑔 𝑥 𝑝(𝑥)

For you to review
so that you can
sleep tonight!



Exercises
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Event-driven probability
• Relate only binary events
◦ Either something happens (𝐸)
◦ or it doesn’t happen (𝐸*)

• Can only report probability

• Lots of combinatorics

Random Variables
• Link multiple similar events 

together (𝑋 = 1, 𝑋 = 2, … , 𝑋 = 6)

• Can compute statistics: report the 
"average" outcome

• Once we have the PMF (for 
discrete RVs), we can do regular 
math

34

A	Whole	New	World	with	Random	Variables
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Example	random	variable
Consider 5 flips of a coin which comes up heads with probability 𝑝.
Each coin flip is an independent trial. Let 𝒀 = # of heads on 5 flips.
1. What is the support of 𝑌? In other words, what are the values that 𝑌 can 

take on with non-zero probability?

2. Define the event 𝑌 = 2. What is 𝑃 𝑌 = 2 ?

3. What is the PMF of 𝑌? In other words, what
is 𝑃 𝑌 = 𝑘 , for 𝑘 in the support of 𝑌?

35

🤔
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Example	random	variable
Consider 5 flips of a coin which comes up heads with probability 𝑝.
Each coin flip is an independent trial. Let 𝒀 = # of heads on 5 flips.
1. What is the support of 𝑌? In other words, what are the values that 𝑌 can 

take on with non-zero probability?

2. Define the event 𝑌 = 2. What is 𝑃 𝑌 = 2 ?

3. What is the PMF of 𝑌? In other words, what
is 𝑃 𝑌 = 𝑘 , for 𝑘 in the support of 𝑌?

36

0, 1, 2, 3, 4, 5

𝑃 𝑌 = 2 = 5
2 𝑝' 1 − 𝑝 (

𝑃 𝑌 = 𝑘 = 5
𝑘 𝑝O 1 − 𝑝 *PO
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Lying	with	statistics
A school has 3 classes with 5, 10, and 150 students.
What is the average class size?

37

1.  Interpretation #1
• Randomly choose a class

with equal probability.
• 𝑋 = size of chosen class

𝐸 𝑋 = 5
1
3
+ 10

1
3
+ 150

1
3

=
165
3

= 55

2.  Interpretation #2
• Randomly choose a student

with equal probability.
• 𝑌 = size of chosen class

𝐸 𝑌 = 5
5
165

+ 10
10
165

+ 150
150
165

=
22635
165

≈ 137

Average student perception of class sizeWhat alumni relations usually reports
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Being	a	statistician	unconsciously
Let 𝑋 be a discrete random variable.
• 𝑃 𝑋 = 𝑥 = $

(
 for 𝑥 ∈ {−1, 0, 1}

Let 𝑌 = |𝑋|. What is 𝐸 𝑌 ?

38

Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑋 =E
!

𝑔 𝑥 𝑝(𝑥)

A. !
"
⋅ 1 + !

"
⋅ 0 + !

"
⋅ −1	 = 0

B.  𝐸 𝑌 = 𝐸 0 	 = 0

C. !
"
⋅ 0 + #

"
⋅ 1	 = #

"

D. !
"
⋅ −1 + !

"
⋅ 0 + !

"
1 = #

"
E.  C and D
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A. !
"
⋅ 1 + !

"
⋅ 0 + !

"
⋅ −1	 = 0

B.  𝐸 𝑌 = 𝐸 0 	 = 0

C. !
"
⋅ 0 + #

"
⋅ 1	 = #

"

D. !
"
⋅ −1 + !

"
⋅ 0 + !

"
1 = #

"
E.  C and D

Being	a	statistician	unconsciously
Let 𝑋 be a discrete random variable.
• 𝑃 𝑋 = 𝑥 = $

(
 for 𝑥 ∈ {−1, 0, 1}

Let 𝑌 = |𝑋|. What is 𝐸 𝑌 ?
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Expectation 
of 𝑔 𝑋

𝐸 𝑔 𝑋 =E
!

𝑔 𝑥 𝑝(𝑥)

𝐸 𝑋  

1.  Find PMF of 𝑌: 𝑝8 0 = (
*
, 𝑝8 1 = )

*
 

2.  Compute 𝐸[𝑌]

Use LOTUS by using PMF of X:
1.  𝑃 𝑋 = 𝑥 ⋅ 𝑥
2.  Sum up

𝐸 𝐸 𝑋

❌

❌


