Table of Contents

- 2 Independence I
- 9 Independence II
- 13 Exercises

o5: Independence

Jerry Cain January 19th, 2024

Lecture Discussion on Ed

Independence I

Independence

Two events E and F are defined as independent if:

$$P(EF) = P(E)P(F)$$

Otherwise E and F are called <u>dependent</u> events.

If *E* and *F* are independent, then:

$$P(E|F) = P(E)$$

Intuition through proof

Statement:

If E and F are independent, then P(E|F) = P(E).

Proof:

$$P(E|F) = \frac{P(EF)}{P(F)}$$
$$= \frac{P(E)P(F)}{P(F)}$$
$$= P(E)$$

Definition of conditional probability

Independence of E and F

Taking the bus to cancellation city

Knowing that *F* happened does not change our belief that E happened.

Dice, our misunderstood friends

Independent P(EF) = P(E)P(F)events E and F P(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$

event F: $D_2 = 6$

event *G*: $D_1 + D_2 = 5$

- 1. Are E and F independent? $EF = E \cap F = \{(1,1)\}$ P(E) = 1/6 P(E) = 1/36 P(EF) = 1/36
 - <u>independent</u>

|G|=4

 $G = \{(1,4), (2,3), (3,2), (4,1)\}$

$$P(E) = 1/6$$

$$P(G) = 4/36 = 1/9$$

$$P(EG) = 1/36 \neq P(E)P(G)$$

$$\frac{1}{6}$$
 $\frac{1}{9}$ = $\frac{1}{54}$

Generalizing independence

n events E_1, E_2, \dots, E_n are independent if:

```
Three events E, F, and G are independent if: P(EFG) = P(E)P(F)P(G), \text{ and} 
P(EFG) = P(E)P(F), \text{ and} 
P(EG) = P(E)P(G), \text{ and} 
P(FG) = P(F)P(G)
                                                        for r = 1, ..., n:
                                                              for every subset E_1, E_2, ..., E_r:
                                                                     P(E_1 E_2 ... E_r) = P(E_1) P(E_2) ... P(E_r)
                                                         - We need pairwise independence
                                                          - We need triv-wise independence
- We need gravitet-wise independence
```

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .

event F: $D_2 = 6$

event
$$G: D_1 + D_2 = 7$$
 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

- 1. Are E and F 2. Are E and G 3. Are F and G 4. Are E, F, G
 - independent? independent?

$$P(EF) = 1/36$$

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .

event
$$F$$
: $D_2 = 6$

event *G*:
$$D_1 + D_2 = 7$$

$$G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

- independent?

P(EF) = 1/36

- 1. Are E and F 2. Are E and G 3. Are F and G 4. Are E, F, G

$$P(E6) = \frac{1}{31}$$

 $P(E)P(6) = \frac{1}{6} \cdot \frac{1}{6}$

$$P(E_6) = \frac{1}{31}$$
 $P(F_6) = \frac{1}{36}$
 $P(F_6) = \frac{1}{36}$

$$P(E)P(G) = \frac{1}{6} \cdot \frac{1}{6}$$

$$P(E) P(F) P(G) = (\frac{1}{6})^{3}$$

Pairwise independence is not sufficient to prove independence of >2 events!

Independence II

Independent trials

We often are interested in experiments consisting of n independent trials.

- n trials, each with the same set of possible outcomes
- *n*-way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:

- Flip a coin n times
- Roll a die n times
- Send a multiple-choice survey to n people
- Send n web requests to k different servers

Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?

Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?

$$P(E) = P(\geq 1 \text{ one router works})$$

$$= 1 - P(\text{all routers fail}) = 1 - P(\text{router 1 fails us with probability}(1-p_i))$$

$$= 1 - (1-p_1)(1-p_2)\cdots(1-p_n)$$

$$= 1 - \prod_{i=1}^{n} (1-p_i)$$

$$\geq 1 \text{ with independent trials: take complement}$$

 \geq 1 with independent trials: take complement

Exercises

Independence?

Independent events
$$E$$
 and F
$$P(EF) = P(E)P(F)$$
$$P(E|F) = P(E)$$

P(E/F) = P(E)

- assume P(E), P(F) >0
- 1. True or False? Two events *E* and *F* are independent if:
 - A. Knowing that F happens means that E can't happen. $P(E|F) = 0 \neq P(E)$
 - B. %Knowing that F happens doesn't change probability that E happened.
- 2. Are E and F independent in the following pictures?

$$P(E) = \frac{2}{9} + \frac{4}{9} = \frac{6}{9} = \frac{2}{3}$$
 $P(E) - P(F)$
 $P(F) = \frac{2}{9} + \frac{1}{9} = \frac{3}{9} = \frac{1}{3}$ $P(E) \cdot P(F)$
hami, and Jerry Cain, CS109, Winter 2024

Independence?

Independent events
$$E$$
 and F
$$P(EF) = P(E)P(F)$$
$$P(E|F) = P(E)$$

- 1. True or False? Two events E and F are independent if:
 - A. Knowing that F happens means that E can't happen.
 - B. Knowing that F happens doesn't change probability that E happened.
- 2. Are E and F independent in the following pictures?

Be careful:

- Independence is NOT mutual exclusion.
- Independence is difficult to visualize graphically.

Independence

Two events E and F are defined as <u>independent</u> if:

$$P(EF) = P(E)P(F)$$

For independent events E and F,

- P(E|F) = P(E)
- E and F^{C} are independent.

new

Independence of complements

Statement:

If E and F are independent, then E and F^{C} are independent.

Proof:

$$P(EF^C) = P(E) - P(EF)$$
 Intersection
 $= P(E) - P(E)P(F)$ Independence of E and F
 $= P(E)[1 - P(F)]$ Factoring
 $= P(E)P(F^C)$ Complement

E and F^{C} are independent

mathematically: P(E)FC) = P(E)

Knowing that *F* did or didn't happen does not change our belief that E happened.

(biased) Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- 1. P(n heads on n coin flips)
- 2. P(n tails on n coin flips)
- 3. P(first k heads, then n-k tails)
- 4. P(exactly k heads on n coin flips)

(biased) Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- 1. P(n heads on n coin flips)
- 2. P(n tails on n coin flips)
- 3. P(first k heads, then n k tails)
- 4. P(exactly k heads on n coin flips)

$$\binom{n}{k}$$
 $p^k(1-p)^{n-k}$

of mutually exclusive outcomes

P(a particular outcome's k heads on n coin flips)

S)

HH...H TTT...T => pk (1-p) m/k

ps single sequence

of n flips with k woods some where is pk (1-p)

Here are (k) such sequences

+ that probability is (m) pk (1-p) m-k

Make sure you understand #4! It will come up again.

Probability of events

Probability of events

Probability of events

Augustus De Morgan

Augustus De Morgan (1806–1871):

British mathematician who wrote the book Formal Logic (1847).

De Morgan's Laws

De Morgan's lets you switch between AND and OR.

$$(E \cap F)^C = E^C \cup F^C$$

$$F^{\mathcal{C}}$$
 In probability:

$$\left(\bigcap_{i=1}^{n} E_i\right)^C = \bigcup_{i=1}^{n} E_i^C$$

$$P(E_1 E_2 \cdots E_n)$$

$$= 1 - P((E_1 E_2 \cdots E_n)^C)$$

when
$$n=4$$
, $(E_1 \cap E_2 \cap E_3 \cap E_4)^c = E_1^c \vee E_2^c \vee E_3^c \vee E_4^c = 1 - P(E_1^c \cup E_2^c \cup \dots \cup E_n^c)$
Great if E_1^c mutually exclusive.

$$1 - P(E_1^c \cup E_2^c \cup \cdots \cup E_n^c)$$

Great if E_i^C mutually exclusive!

$$(E \cup F)^C = E^C \cap F^C$$

$$\left(\bigcup_{i=1}^{n} E_i\right)^C = \bigcap_{i=1}^{n} E_i^C$$

In probability:

$$P(E_1 \cup E_2 \cup \dots \cup E_n)$$

$$= 1 - P((E_1 \cup E_2 \cup \dots \cup E_n)^C)$$

$$= 1 - P(E_1^c E_2^c \dots E_n^c)$$

(E, VE, VE, VE, VE,) = E, n E, n E, n E, n E, n E,

Great if E_i independent!

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$

2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets. $\sum_{i=1}^{\infty} p_i = 1$
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$

Define

 S_i = string i is hashed into bucket 1 S_i^C = string i is not hashed into bucket 1

$$P(S_i) = p_1$$

$$P(S_i^C) = 1 - p_1$$

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

Define

 S_i = string i is

hashed into bucket 1

 S_i^C = string i is not

What is P(E) if

1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$

WTF (not-real acronym for Want To Find):

$$P(E) = P(S_1 \cup S_2 \cup \cdots \cup S_m)$$
 hashed into bucket 1
$$= 1 - P\left((S_1 \cup S_2 \cup \cdots \cup S_m)^C\right)$$
 Complement
$$= 1 - P\left(S_1^C S_2^C \cdots S_m^C\right)$$
 De Morgan's Law
$$P(S_i) = p_1$$

$$P(S_i^C) = 1 - p_1$$

$$= 1 - P\left(S_1^C\right) P\left(S_2^C\right) \cdots P\left(S_m^C\right) = 1 - \left(P\left(S_1^C\right)\right)^m$$
 S_i independent trials
$$= 1 - (1 - p_1)^m$$

More hash table fun: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

- 1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \dots \cup F_k)$$

$$= 1 - P((F_1 \cup F_2 \cup \dots \cup F_k)^C)$$

$$= 1 - P(F_1^C F_2^C \dots F_k^C)$$

$$? = 1 - P(F_1^C)P(F_2^C) \dots P(F_k^C)$$

Define

 F_i = bucket i has at least one string in it

 $\stackrel{\bullet}{\vdash}$ F_i bucket events are dependent!

So we cannot approach with complement.

More hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

- 1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)$$

$$= 1 - P((F_1 \cup F_2 \cup \cdots \cup F_k)^C)$$

$$= 1 - P(F_1^C F_2^C \cdots F_k^C)$$

$$= (P(\text{each string hashes to } k + 1 \text{ or higher})^m$$

$$= (1 - p_1 - p_2 - p_k)^m$$

$$= 1 - (1 - p_1 - p_2 \dots - p_k)^m$$

The fun never stops with hash tables

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$

2. $E = \text{at least 1 of buckets 1 to } k \text{ has } \geq 1 \text{ string hashed into it?}$

Looking for a challenge? ©

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

- 1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$
- 2. $E = \text{at least 1 of buckets 1 to } k \text{ has } \geq 1 \text{ string hashed into it?}$
- 3. E = each of buckets 1 to k has ≥ 1 string hashed into it?

Hint: Use Part 2's event definition:

Define F_i = bucket i has at least one string in it