o5: Independence

Jerry Cain April 10th, 2024

Lecture Discussion on Ed

Independence I

Independence

Two events *E* and *F* are defined as independent if: P(EF) = P(E)P(F)

Otherwise *E* and *F* are called <u>dependent</u> events.

If *E* and *F* are independent, then:

$$P(E|F) = P(E)$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Intuition through proof

Independent events *E* and *F* P(EF) = P(E)P(F)

Statement:

If E and F are independent, then P(E|F) = P(E).

Proof:

$$P(E|F) = \frac{P(EF)}{P(F)}$$
$$= \frac{P(E)P(F)}{P(F)}$$
$$= P(E)$$

Definition of conditional probability

Independence of E and F

Taking the bus to cancellation city

Knowing that F happened does not change our belief that E happened.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Dice, our misunderstood friends events *E* and *F* P(E|F) = P(E)Roll two 6-sided dice, yielding values D_1 and D_2 . Let event *E*: $D_1 = 1$ event F: $D_2 = 6$ event *G*: $D_1 + D_2 = 5$ $G = \{(1,4), (2,3), (3,2), (4,1)\}$ |G| = 4**1.** Are *E* and *F* independent? 2. Are *E* and *G* independent? EF > EAF = { (1, b)} $EG = \{(1,4)\}$ P(E) = 1/6 $P(E) P(F) = \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{36}$ P(E) = 1/6 $P(E_6) = \frac{1}{36}$ P(F) = 1/6 P(EF) = 1/36 $P(EF) = \frac{1}{31}$ P(G) = 4/36 = 1/9 $P(EG) = 1/36 \neq P(E)P(G)$ $\times \underline{dependent} \qquad \boxed{V_b} \qquad \boxed{V_q} \Rightarrow \sqrt{54}$ ✓ independent no!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Stanford University 5

Independent $\square P(EF) = P(E)P(F)$

Generalizing independence

Three events *E*, *F*, and *G* are independent if:

$$P(EFG) = P(E)P(F)P(G), \text{ and}$$

$$P(EF) = P(E)P(F), \text{ and}$$

$$P(EG) = P(E)P(G), \text{ and}$$

$$P(FG) = P(F)P(G)$$

$$P(FG) = P(F)P(G)$$

$$P(FG) = P(F)P(G)$$

n events
$$E_1, E_2, \ldots, E_n$$
 are
independent if:
$$for r = 1, \ldots, n:$$
for every subset E_1, E_2, \ldots, E_r :
$$P(E_1E_2 \ldots E_r) = P(E_1)P(E_2) \cdots P(E_r)$$
informelly; - we need pairwise indeputere for all paire.
- we need frib - wise indeputere for all prifter.
- we need gradet - wise indeputere for all grates.
- we need gradet - wise indeputere for all grates.
- we need gradet - wise indeputere for all grates.

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 . •
 - Let event *E*: $D_1 = 1$ event *F*: $D_2 = 6$ event *G*: $D_1 + D_2 = 7$

$$G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

1. Are E and F **2.** Are E and G **3.** Are F and G **4.** Are E, F, GEF 10 still { (1,6)}

P(EF) = 1/36

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .

 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

1. Are *E* and *F* independent? $\begin{array}{c}
\text{2. Are$ *E*and*G* independent? $<math display="block">
\begin{array}{c}
\text{5. Are$ *E*and*G* independent? $}$ $\begin{array}{c}
\text{6. Are$ *E*and*G* independent? $}$ $\begin{array}{c}
\text{6. Are$ *E*and*G* independent? $}$ $\begin{array}{c}
\text{6. Are$ *E*and*G* $}$ $\begin{array}{c}
\text{6. Are$ *E*and*G* $}$ $\begin{array}{c}
\text{6. Are$ *E*and*G* $}$ $\begin{array}{c}
\text{6. Are$ *E*

Pairwise independence is not sufficient to prove independence of 3 or more events!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Independence II

Independent trials

We often are interested in experiments consisting of *n* independent trials.

- *n* trials, each with the same set of possible outcomes
- *n*-way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:

- Flip a coin *n* times
- Roll a die *n* times
- Send a multiple-choice survey to *n* people
- Send *n* web requests to *k* different servers

Network reliability

Consider the following parallel network:

- *n* independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?

Network reliability

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Exercises

Independence?

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

- **1.** True or False? Two events *E* and *F* are independent if:
- A. Knowing that F happens means that E can't happen.
- B. Knowing that F happens doesn't change probability that E happened.
- 2. Are *E* and *F* independent in the following pictures?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- **1.** P(n heads on n coin flips)
- 2. P(n tails on n coin flips)
- 3. P(first k heads, then n k tails)
- **4.** *P*(exactly *k* heads on *n* coin flips)

Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following: S) n consecutive heads -> HHHHH... H => pⁿ S) n consecutive tails -> TTT... T => (1-p)ⁿ = q where q P(n heads on n coin flips)P(n tails on n coin flips)2. $P(\text{first } k \text{ heads, then } n - k \text{ tails}) \longrightarrow \underbrace{\text{HH} \cdot \text{H}}_{k} \underbrace{\text{TTT} \cdot \text{T}}_{n-k} \Rightarrow P^{k}g^{n-k}$ P(exactly k heads on n coin flips) (any particular segurate of n flips with exactly k heads somewhere within => pk (1-p) and there are $\binom{n}{k}$ such sequences 's total probability is $\binom{n}{k}P^{k}(1-p)^{n-k}$ $\binom{n}{k} p^k (1-p)^{n-k}$ # of mutually *P*(a particular outcome's exclusive k heads on n coin flips) outcomes Make sure you understand #4! It will come up again. Stanford University 17

Probability of events

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Probability of events

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

De Morgan's Laws

De Morgan's lets you switch between AND and OR.

$$\begin{array}{c} \textbf{S} \\ \textbf{E} \\ \textbf{E} \\ \textbf{F} \\ \textbf$$

Hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets. $\sum_{i=1}^{n} p_i = 1$
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

1. E = bucket 1 has \geq 1 string hashed into it?

2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets. $\sum_{n=1}^{\infty} \mathbb{P}_{n} = \mathbb{V}$
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

1. E =bucket 1 has ≥ 1 string hashed into it?

Hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if **1.** E = bucket 1 has ≥ 1 string hashed into it? Define S_i = string *i* is hashed into bucket 1 <u>WTF</u> (not-real acronym for Want To Find): S_i^C = string *i* is <u>not</u> hashed into bucket 1 $P(E) = P(S_1 \cup S_2 \cup \cdots \cup S_m)$ $= 1 - P((S_1 \cup S_2 \cup \dots \cup S_m)^C)$ Complement $P(S_i) = p_1$ $= 1 - P(S_1^C S_2^C \cdots S_m^C)$ De Morgan's Law $P(S_{i}^{C}) = 1 - p_{1}$ $= 1 - P(S_1^{C})P(S_2^{C}) \cdots P(S_m^{C}) = 1 - (P(S_1^{C}))^m$ S_i independent trials $= 1 - (1 - p_1)^m$ Stanford University 24 Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

More hash table **fun**: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if

- 1. E = bucket 1 has \geq 1 string hashed into it?
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)$$

= $1 - P((F_1 \cup F_2 \cup \cdots \cup F_k)^C)$
= $1 - P(F_1^C F_2^C \cdots F_k^C)$
? = $1 - P(F_1^C) P(F_2^C) \cdots P(F_k^C)$

Define F_i = bucket *i* has at least one string in it

 F_i bucket events are dependent!

So we cannot approach with complement.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

More hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

- 1. E = bucket 1 has \geq 1 string hashed into it?
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \dots \cup F_k)$$

= $1 - P((F_1 \cup F_2 \cup \dots \cup F_k)^C)$
= $1 - P(F_1^C F_2^C \cdots F_k^C)$
= $P(buckets 1 to k all denied strings)$
= $(P(each string hashes to k + 1 or higher))^m$
= $(1 - p_1 - p_2 \dots - p_k)^m$

$$= 1 - (1 - p_1 - p_2 \dots - p_k)^m$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024