o5: Independence

Jerry Cain April 10th, 2024

Lecture Discussion on Ed

Independence I

Independence

Two events *E* and *F* are defined as <u>independent</u> if:

$$P(EF) = P(E)P(F)$$

Otherwise E and F are called <u>dependent</u> events.

If *E* and *F* are independent, then:

$$P(E|F) = P(E)$$

Intuition through proof

Statement:

If E and F are independent, then P(E|F) = P(E).

Proof:

$$P(E|F) = \frac{P(EF)}{P(F)}$$
 Definition of conditional probability
$$= \frac{P(E)P(F)}{P(F)}$$
 Independence of E and F
$$= P(E)$$
 Taking the bus to cancellation city

Knowing that *F* happened does not change our belief that E happened.

Dice, our misunderstood friends

Independent P(EF) = P(E)P(F)events E and FP(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$

event F: $D_2 = 6$

event *G*: $D_1 + D_2 = 5$

1. Are E and F independent?

$$P(E) = 1/6$$

 $P(F) = 1/6$
 $P(EF) = 1/26$

P(EF) = 1/36

2. Are E and G independent?

 $G = \{(1,4), (2,3), (3,2), (4,1)\}$

$$P(E) = 1/6$$

 $P(G) = 4/36 = 1/9$
 $P(EG) = 1/36 \neq P(E)P(G)$

X dependent

Generalizing independence

Three events
$$E$$
, F , and G are independent if:
$$P(EFG) = P(E)P(F)P(G), \text{ and } P(EF) = P(E)P(F), \text{ and } P(EG) = P(E)P(G), \text{ and } P(FG) = P(F)P(G)$$

```
n events E_1, E_2, \dots, E_n are independent if: for r=1, \dots, n: for every subset E_1, E_2, \dots, E_r: P(E_1E_2 \dots E_r) = P(E_1)P(E_2) \cdots P(E_r)
```

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .

event F: $D_2 = 6$

event
$$G: D_1 + D_2 = 7$$
 $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

- ✓ independent?
- independent?
- 1. Are E and F 2. Are E and G 3. Are F and G 4. Are E, F, G
 - independent? independent?

$$P(EF) = 1/36$$

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .

event F: $D_2 = 6$

event *G*: $D_1 + D_2 = 7$

$$G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

- 1. Are E and F 2. Are E and G 3. Are F and G 4. Are E, F, G

- independent?
- independent?
- ✓ independent?

 ✓ independent?

$$P(EF) = 1/36$$

Pairwise independence is not sufficient to prove independence of 3 or more events!

Independence II

Independent trials

We often are interested in experiments consisting of n independent trials.

- n trials, each with the same set of possible outcomes
- n-way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:

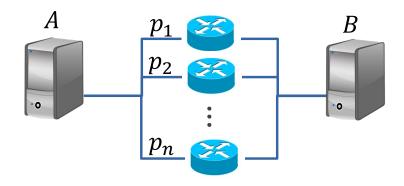
- Flip a coin n times
- Roll a die n times
- Send a multiple-choice survey to n people
- Send n web requests to k different servers

Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?

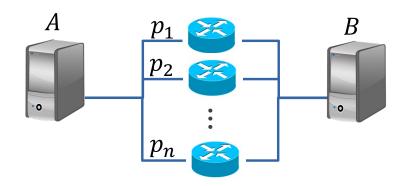


Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?



$$P(E) = P(\ge 1 \text{ one router works})$$

$$= 1 - P(\text{all routers fail})$$

$$= 1 - (1 - p_1)(1 - p_2) \cdots (1 - p_n)$$

$$= 1 - \prod_{i=1}^{n} (1 - p_i)$$

 ≥ 1 with independent trials: take complement

Exercises

Independence?

Independent events
$$E$$
 and F
$$P(EF) = P(E)P(F)$$
$$P(E|F) = P(E)$$

- True or False? Two events *E* and *F* are independent if:
 - Knowing that F happens means that E can't happen.
 - Knowing that F happens doesn't change probability that E happened.
- Are *E* and *F* independent in the following pictures?

1/4 1/4

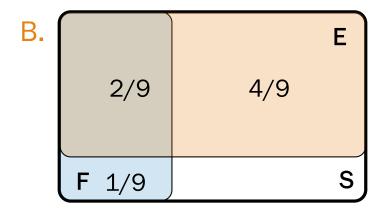
B. 1/9

Independence?

Independent events
$$E$$
 and F
$$P(EF) = P(E)P(F)$$
$$P(E|F) = P(E)$$

- True or False? Two events *E* and *F* are independent if:
 - Knowing that F happens means that E can't happen.
 - Knowing that F happens doesn't change probability that E happened.
- Are *E* and *F* independent in the following pictures?

Α. 1/4 1/4



Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- 1. P(n heads on n coin flips)
- 2. P(n tails on n coin flips)
- 3. P(first k heads, then n-k tails)
- 4. P(exactly k heads on n coin flips)

Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- P(n heads on n coin flips)
- P(n tails on n coin flips)
- P(first k heads, then n-k tails)
- P(exactly k heads on n coin flips)

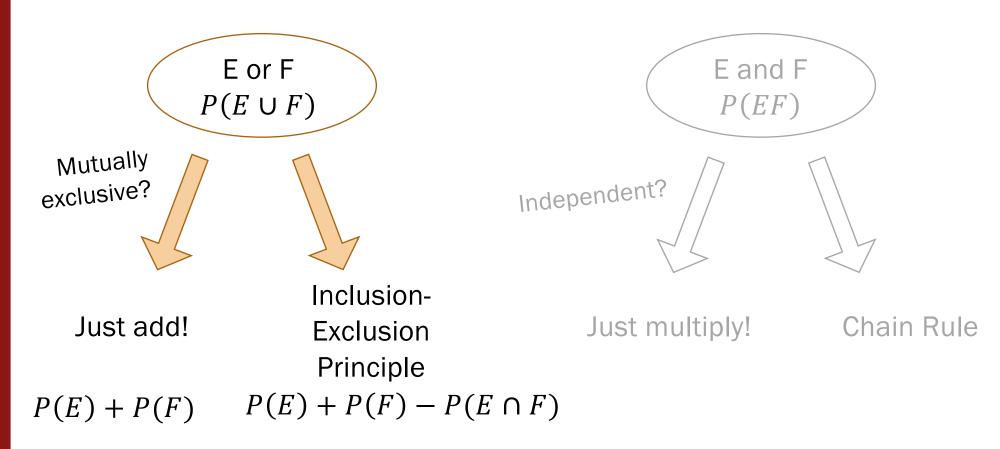
$$\binom{n}{k} p^k (1-p)^{n-k}$$

of mutually exclusive outcomes

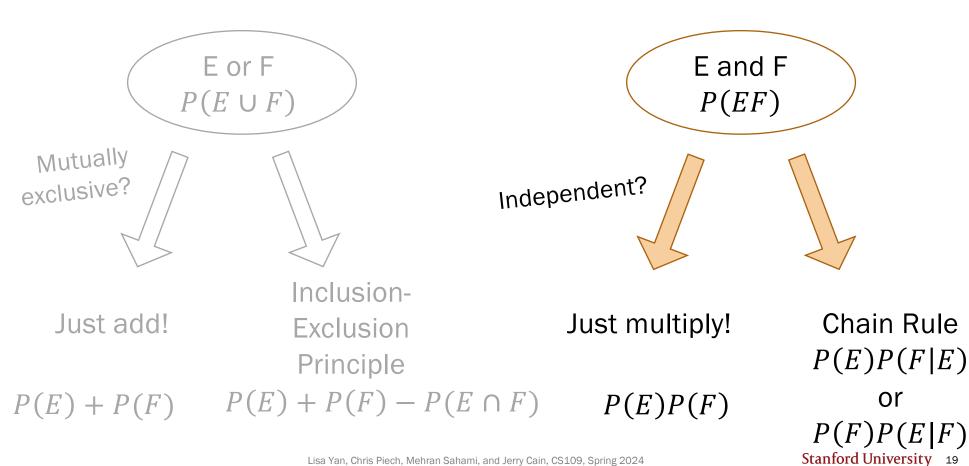
P(a particular outcome's k heads on n coin flips)

Make sure you understand #4! It will come up again.

Probability of events

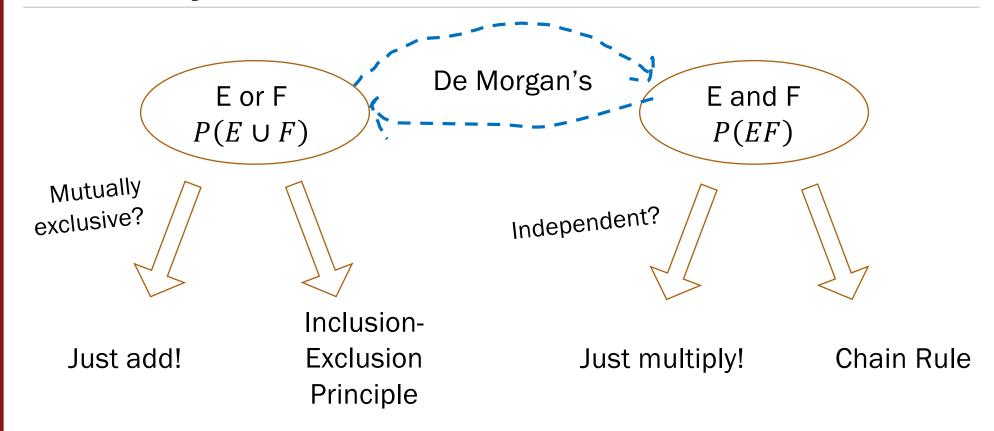


Probability of events



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

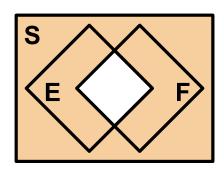
Probability of events



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

De Morgan's Laws

De Morgan's lets you switch between AND and OR.



$$(E \cap F)^C = E^C \cup F^C$$

$$\left(\bigcap_{i=1}^{n} E_i\right)^C = \bigcup_{i=1}^{n} E_i^C$$

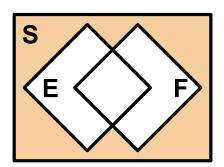
In probability:

$$P(E_1 E_2 \cdots E_n)$$

$$= 1 - P((E_1 E_2 \cdots E_n)^c)$$

$$= 1 - P(E_1^c \cup E_2^c \cup \cdots \cup E_n^c)$$

Great if E_i^C mutually exclusive!



$$(E \cup F)^C = E^C \cap F^C$$

$$\left(\bigcup_{i=1}^{n} E_i\right)^C = \bigcap_{i=1}^{n} E_i^C$$

In probability:

$$P(E_1 \cup E_2 \cup \dots \cup E_n)$$

$$= 1 - P((E_1 \cup E_2 \cup \dots \cup E_n)^c)$$

$$= 1 - P(E_1^c E_2^c \dots E_n^c)$$

Great if E_i independent!

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$

2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$

Define S_i = string i is hashed into bucket 1 S_i^C = string i is not hashed into bucket 1

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

Define

 S_i = string i is

hashed into bucket 1

 S_i^C = string i is not

What is P(E) if

1. $E = \text{bucket } 1 \text{ has } \ge 1 \text{ string hashed into it?}$

<u>WTF</u> (not-real acronym for Want To Find):

$$P(E) = P(S_1 \cup S_2 \cup \cdots \cup S_m)$$
 hashed into bucket 1
$$= 1 - P\Big((S_1 \cup S_2 \cup \cdots \cup S_m)^C\Big)$$
 Complement
$$= 1 - P\Big(S_1^C S_2^C \cdots S_m^C\Big)$$
 De Morgan's Law
$$P(S_i) = p_1$$

$$P(S_i^C) = 1 - p_1$$

$$= 1 - P\Big(S_1^C P\Big(S_2^C \cap P(S_m^C) = 1 - P\Big(S_1^C P\Big(S_1^C \cap P(S_1^C \cap P(S_1^C$$

More hash table fun: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

- 1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \dots \cup F_k)$$

$$= 1 - P((F_1 \cup F_2 \cup \dots \cup F_k)^C)$$

$$= 1 - P(F_1^C F_2^C \dots F_k^C)$$

$$? = 1 - P(F_1^C)P(F_2^C) \dots P(F_k^C)$$

Define

 F_i = bucket i has at least one string in it

 $\stackrel{\bullet}{\vdash}$ F_i bucket events are dependent!

So we cannot approach with complement.

More hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

- 1. $E = \text{bucket 1 has} \ge 1 \text{ string hashed into it?}$
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)$$

$$= 1 - P((F_1 \cup F_2 \cup \cdots \cup F_k)^C)$$

$$= 1 - P(F_1^C F_2^C \cdots F_k^C)$$

$$= (P(\text{each string hashes to } k + 1 \text{ or higher})^m$$

$$= (1 - p_1 - p_2 - p_k)^m$$

$$= 1 - (1 - p_1 - p_2 \dots - p_k)^m$$