o4: Conditional Probability and Bayes

Jerry Cain April 8th, 2024

Lecture Discussion on Ed

Conditional Probability

Dice, our misunderstood friends

```
Roll two, fair 6-sided dice,
yielding values D_1 and D_2.
Let E be event: D_1 + D_2 = 4.
                                 Let F be event: D_1 = 2.
What is P(E)?
                                  What is P(E, knowing F already observed)?
|S| = 36
E = \{(1,3), (2,2), (3,1)\}
P(E) = 3/36 = 1/12
```

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Conditional Probability

Event \rightarrow

The **conditional probability** of *E* given *F* is the probability that *E* occurs given that F has already occurred. This is known as conditioning on F.

Written as:P(E|F)Means:"P(E, knowing F already observed)"Sample space \rightarrow all possible outcomes in F

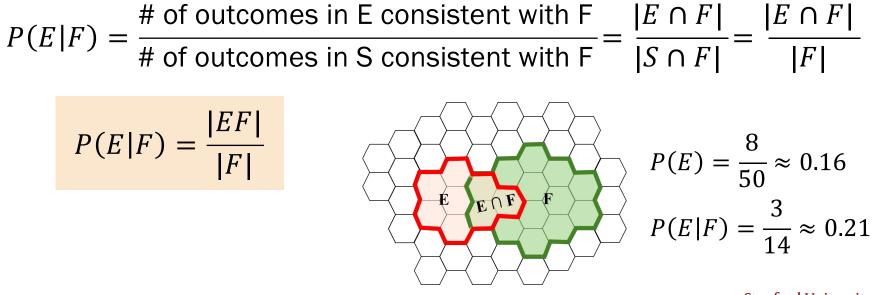
all possible outcomes in $E \cap F$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Conditional Probability, equally likely outcomes

The **conditional probability** of *E* given *F* is the probability that *E* occurs given that F has already occurred. This is known as conditioning on F.

With equally likely outcomes:



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Slicing up the spar	n	$P(E F) = \frac{ EF }{ F }$	Equally likely outcomes		
24 emails are sent, 6 ea10 of the 24 emails areAll possible outcomes are	are spam.				
Let E = user 1 receives 3 spam emails. What is $P(E)$?	Let F = user 2 receives 6 spam emails. What is $P(E F)$?		er 3 receives spam emails. (G F)?		

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Slicing up the spam

 $P(E|F) = \frac{|EF|}{|E|}$

Equally likely outcomes

24 emails are sent, 6 each to 4 users.

- 10 of the 24 emails are spam.
- All possible outcomes are equally likely.

Let F = user 2 receives Let E = user 1 receives Let G = user 3 receives 3 spam emails. 6 spam emails. 5 spam emails. What is P(E)? What is P(E|F)? What is P(G|F)? $P(G|F) = \frac{\binom{4}{5}\binom{14}{1}}{\binom{18}{5}}$ $P(E|F) = \frac{\binom{4}{3}\binom{14}{3}}{\binom{18}{5}}$ $P(E) = \frac{\binom{10}{3}\binom{14}{3}}{\binom{24}{6}}$ = 0 ≈ 0.3245 ≈ 0.0784 No way to choose 5 spam from 4 remaining spam emails! Stanford University 7

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Conditional probability in general

General definition of conditional probability:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

The Chain Rule (aka Product rule):

$$P(EF) = P(F)P(E|F)$$

These properties hold even when outcomes are not equally likely.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

NETELX

 $P(E|F) = \frac{P(EF)}{P(F)}$ Definition of Cond. Probability

Let E = a user watches Life is Beautiful. What is P(E)?

Equally likely outcomes?

 $S = \{ watch, not watch \}$ $E = \{ watch \}$ P(E) = 1/2 ?

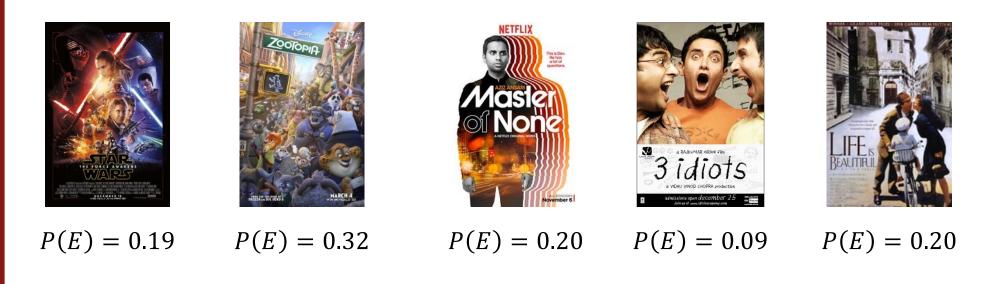
 $\mathbf{\nabla} P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\# \text{ people who have watched movie}}{\# \text{ people on Netflix}}$

 $= 10,234,231 / 50,923,123 \approx 0.20$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

 $P(E|F) = \frac{P(EF)}{P(F)}$ Definition of Cond. Probability

Let *E* be the event that a user watches the given movie.



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Let E = a user watches Life is Beautiful.

Let F = a user watches Amelie.

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

P(E|F)

Definition of

 $P(E|F) = \frac{P(EF)}{P(F)}$ Definition of Cond. Probability

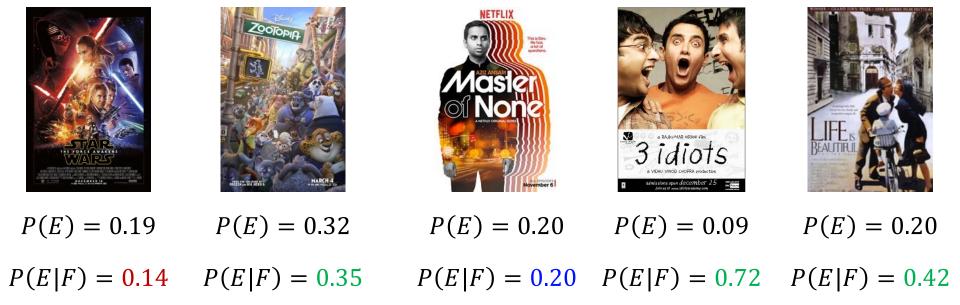
 $P(E|F) = \frac{P(EF)}{P(F)} = \frac{\frac{\# \text{ people who have watched both}}{\# \text{ people on Netflix}}}{\frac{\# \text{ people on Netflix}}{\# \text{ people on Netflix}}}$ $= \frac{\# \text{ people who have watched both}}{\# \text{ people who have watched Amelie}}$

 ≈ 0.42

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

 $P(E|F) = \frac{P(EF)}{P(F)}$ Definition of Cond. Probability

Let *E* be the event that a user watches the given movie. Let *F* be the event that the same user watches Amelie.



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Law of Total Probability

Today's tasks



Law of Total Probability

<u>Thm</u> Let F be an event where P(F) > 0. For any event E, $P(E) = P(E|F)P(F) + P(E|F^{C})P(F^{C})$

<u>Proof</u>

1. F, F^C are disjoint such that $F \cup F^C = S$ Def. of complement2. $E = (EF) \cup (EF^C)$ (see diagram)3. $P(E) = P(EF) + P(EF^C)$ Additivity axiom4. $P(E) = P(E|F)P(F) + P(E|F^C)P(F^C)$ Chain rule (product rule)

Note: disjoint sets are, by definition, mutually exclusive events

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

General Law of Total Probability

<u>Thm</u> For mutually exclusive events $F_1, F_2, ..., F_n$ such that $F_1 \cup F_2 \cup \cdots \cup F_n = S$,

$$P(E) = \sum_{i=1}^{n} P(E|F_i)P(F_i)$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Finding P(E) from P(E|F)

- Flip a fair coin.
- If heads: roll a fair 6-sided die.
- Else: roll a fair 3-sided die.

You win if you roll a 6. What is P(winning)?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Finding P(E) from P(E|F)

- Flip a fair coin.
- If heads: roll a fair 6-sided die.
- Else: roll a fair 3-sided die.

You win if you roll a 6. What is P(winning)?

Define events
 & state goal

Let: E: win, F: flip heads Want: P(win)= P(E) 2. Identify <u>known</u> probabilities

> $P(\min|H) = P(E|F) = 1/6 \qquad P(E) = (1/6)(1/2)$ $P(H) = P(F) = 1/2 \qquad +(0)(1/2)$ $P(\min|T) = P(E|F^{C}) = 0 \qquad = \frac{1}{12} \approx 0.083$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

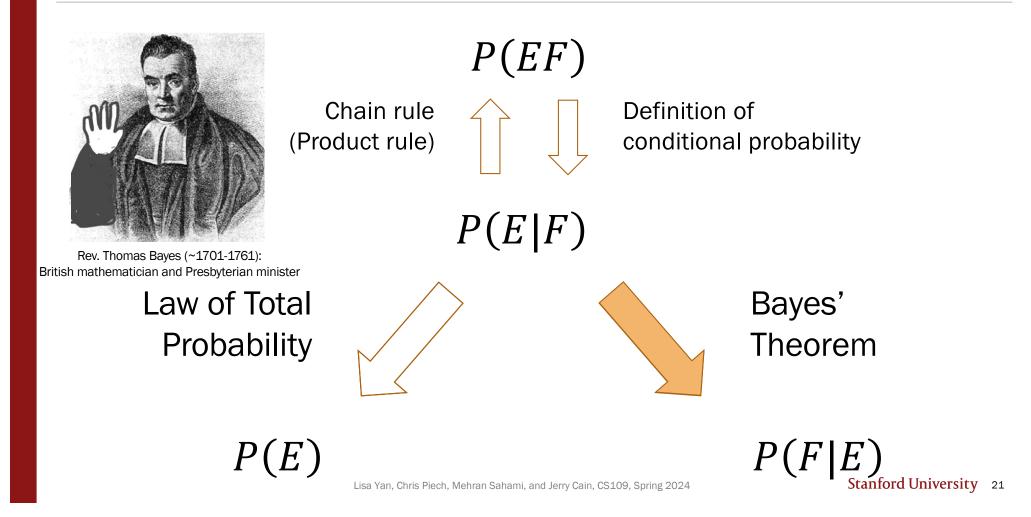
Stanford University 19

 $P(E) = P(E|F)P(F) + P(E|F^{C})P(F^{C})$ Law of Total Probability

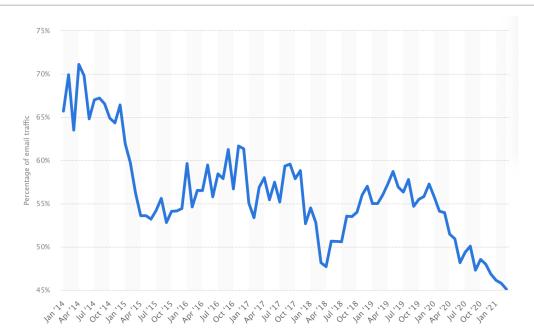
3. Solve

Bayes' Theorem I

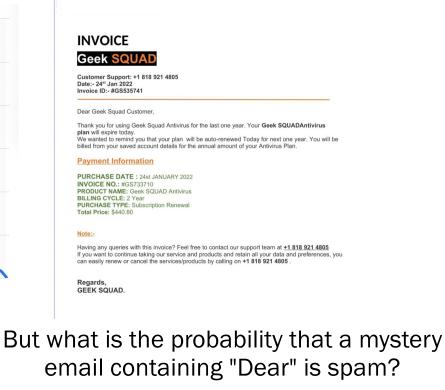
Today's tasks



Detecting spam email



We can easily calculate how many existing spam emails contain "Dear": $P(E|F) = P\left(\text{"Dear"} \middle| \begin{array}{c} \text{Spam} \\ \text{email} \end{array}\right)$



$$P(F|E) = P\left(\begin{array}{c} \text{Spam} \\ \text{email} \end{array} \middle| \text{"Dear"} \right)$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

ŀ

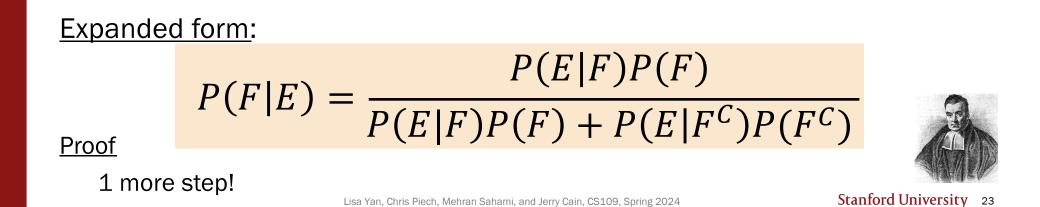
Bayes' Theorem

 $P(E|F) \square P(F|E)$

<u>Thm</u> For any events *E* and *F* where P(E) > 0 and P(F) > 0, $P(F|E) = \frac{P(E|F)P(F)}{P(E)}$

<u>Proof</u>

2 steps!



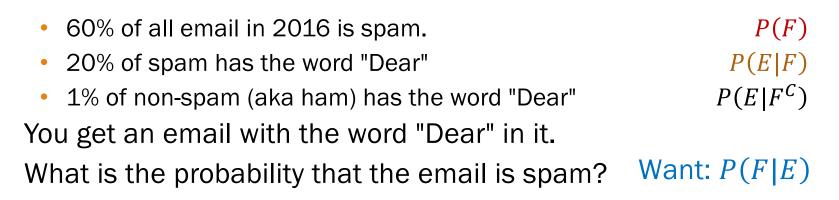
Detecting spam email $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{c})P(F^{c})}$ Bayes'
Theorem• 60% of all email in 2016 is spam.• 20% of spam has the word "Dear"• 1% of non-spam (aka ham) has the word "Dear"You get an email with the word "Dear" in it.

What is the probability that the email is spam?

- Define events
 & state goal
- Let: E: "Dear", F: spam Want: P(spam|"Dear")= P(F|E)
- 2. Identify <u>known</u> probabilities

3. Solve

Bayes' Theorem terminology

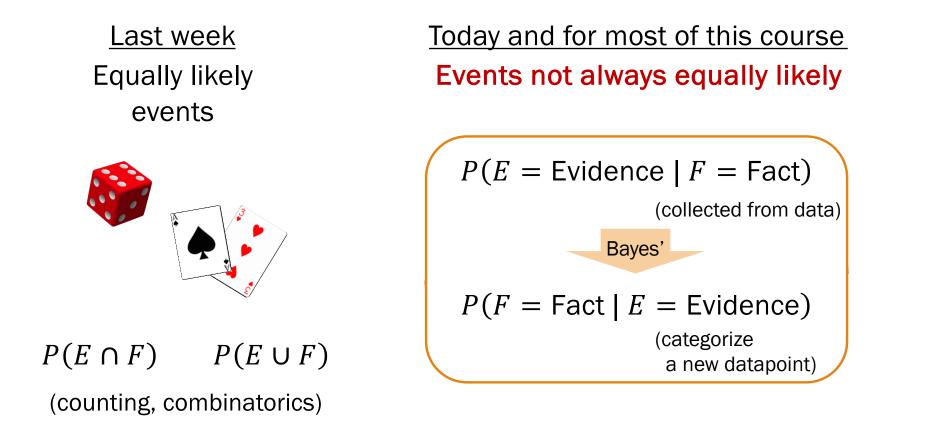




Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Bayes' Theorem II

This class going forward



Bayes' Theorem

Review

posteriorlikelihoodprior
$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

Mathematically:

$$P(E|F) \to P(F|E)$$

Real-life application:

Given new evidence *E*, update belief of fact *F* Prior belief \rightarrow Posterior belief $P(F) \rightarrow P(F|E)$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Zika, an autoimmune disease

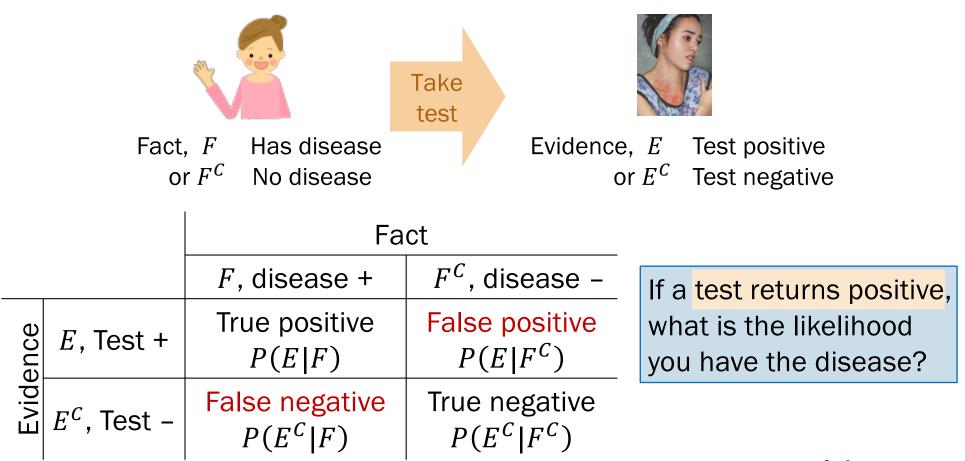
Ziika Forest, Uganda Rhesus monkeys https://www.nytimes.com/2016/04/06/world/africa/ugand a-zika-forest-mosquitoes.html

> If a test returns positive, what is the likelihood you have the disease?

A disease spread through mosquito bites. Generally, no symptoms, but can cause paralysis in very, very rare cases. During pregnancy: may cause birth defects. Very serious news story in 2015/2016.

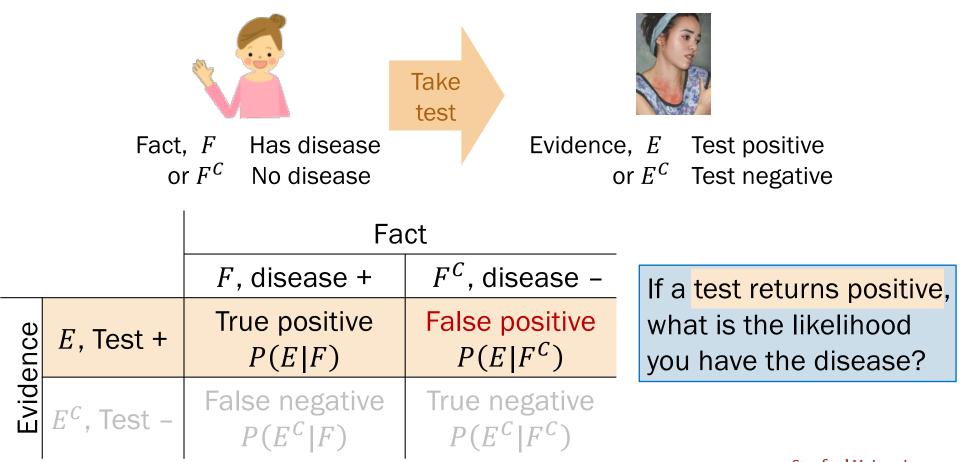
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Taking tests: Confusion matrix



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Taking tests: Confusion matrix



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Zika Testing

 $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}$ Bayes' Theorem

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is the likelihood you have Zika if you test positive?

Why would you expect this number?

Define events & state goal

Let: E = you test positive F = you actually have the disease

Want:

```
\begin{array}{l} \mathsf{P}(\mathsf{disease} \mid \mathsf{test+}) \\ = P(F|E) \end{array}
```


Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Zika Testing

 $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}$ Bayes' Theorem

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is the likelihood you have Zika if you test positive?

Why would you expect this number?

 Define events & state goal 2. Identify <u>known</u> probabilities

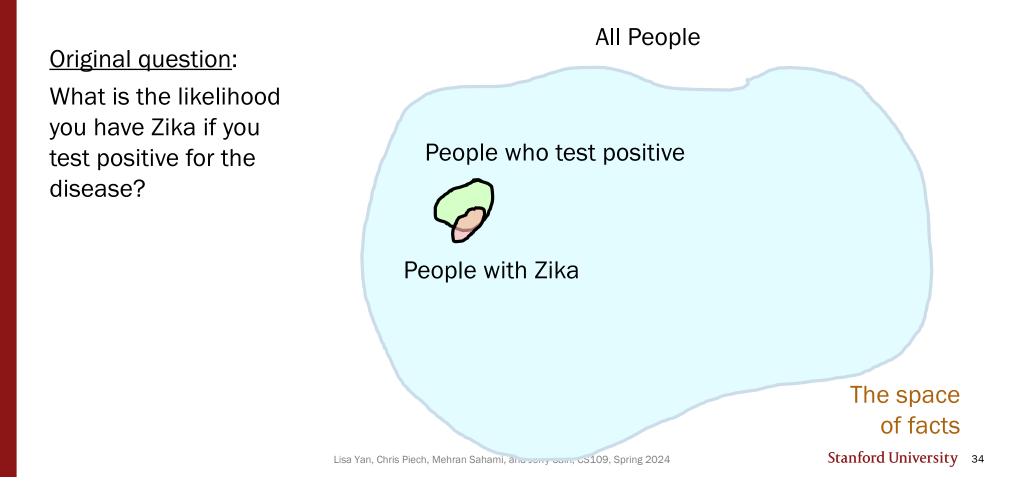
3. Solve

Let: E = you test positive F = you actually have the disease

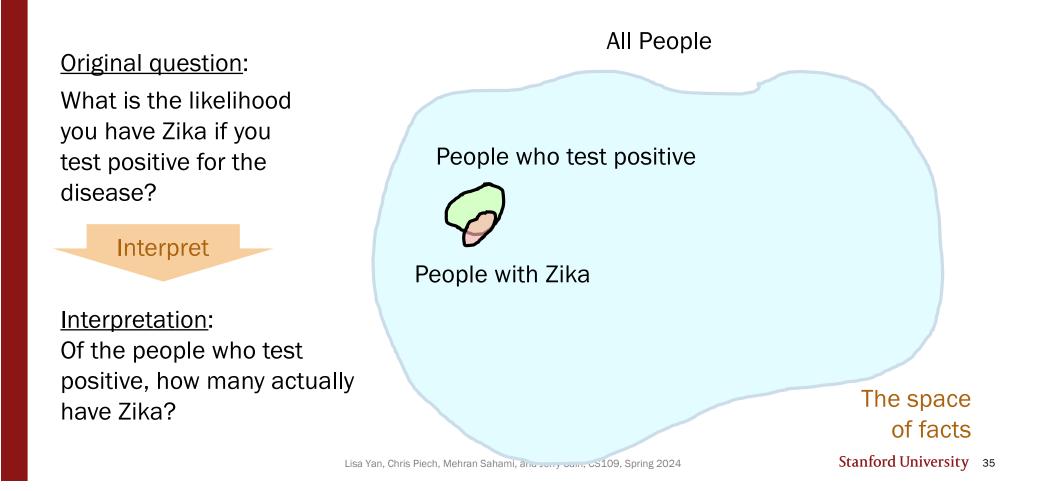
Want:

```
P(\text{disease } | \text{ test+}) \\= P(F|E)
```

Bayes' Theorem intuition



Bayes' Theorem intuition



Bayes' Theorem intuition

Original question:

What is the likelihood you have Zika if you test positive for the disease?

Interpret

Interpretation: Of the people who test positive, how many actually have Zika?

People who test positive

People who test positive but don't have Zika

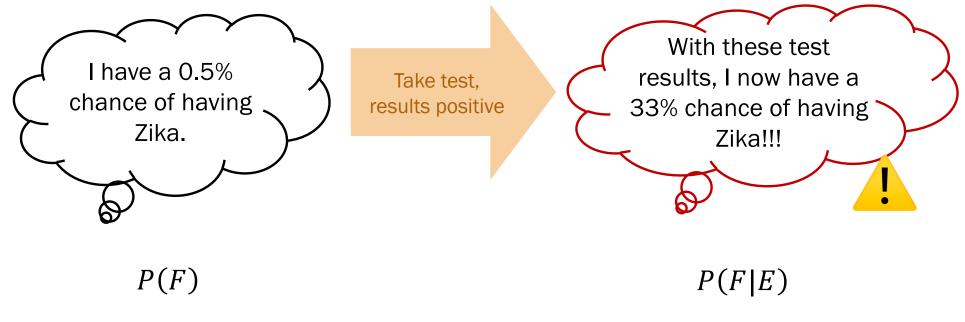
People who test positive and have Zika

The space of facts, **conditioned** on a positive test result

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Update your beliefs with Bayes' Theorem

E = you test positive for Zika F = you have the disease



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

- $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})} \frac{\text{Bayes'}}{\text{Theorem}}$
- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is $P(F|E^{C})$?

Let:	F = you actually have - the disease		F, disease +	F ^C , disease –
		E, Test +	True positive $P(E F) = 0.98$	False positive $P(E F^{C}) = 0.01$
Let:	<i>E^C</i> = you test negative for Zika with this test.		I(L I') = 0.90	I(E I') = 0.01

(ruminating) Stanford University 38

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

- $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}$ Bayes' Theorem
- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is $P(F|E^{C})$?

Let: $E =$ you test positive F = you actually have			F, disease +	F ^C , disease –
Let:	the disease E^{C} = you test negative for Zika with this test.	E, Test +	True positive $P(E F) = 0.98$	False positive $P(E F^{C}) = 0.01$

 $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}$ Bayes' Theorem

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

Let: $E =$ you test positive F = you actually have			F, disease +	F ^C , disease –
	the disease	E, Test +	True positive	False positive
Let:	E^{C} = you test negative		P(E F) = 0.98	$P(E F^C) = 0.01$
_00	for Zika with this test.	E ^C , Test –	False negative	True negative
What	t is $P(F E^{C})$?		$P(\boldsymbol{E^{C}} F) = 0.02$	$P(E^{C} F^{C}) = 0.99$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

$$P(F|E^{C}) = \frac{P(E^{C}|F)P(F)}{P(E^{C}|F)P(F) + P(E^{C}|F^{C})P(F^{C})}$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

