
CS107L Handout 01
Autumn 2007 September 28, 2007

Constructors and Destructors

point class
Let’s start with a simple, object-oriented model of a point in two-dimensional space:

class point {

 public:
 point(double x, double y);

 double getX() const { return x; }
 double getY() const { return y; }
 void translate(double deltax, double deltay);

 private:
 double x;
 double y;
};

I’m hoping there’s very little mystery. The point class is a glorified struct that
encapsulates the data and provides access to that data via public methods. There’s a
simple constructor that mandates x and y values be specified the instant a point is
declared. And translate is the only method in place to change a point once it’s been
created.

If you learned C++ here at Stanford, it’s likely some of the above is confusing. I’m
guessing there are your question:

• What does const mean?
• Why are the implementations of getX and getY exposed in the class definition?

Aren’t we exposing some secret that supposed to be hidden away in some .cc
file?

const is a big thing in C++, but it’s complicated enough that we avoid it in the CS106
curriculum. When the const keyword is typed after the signature of a method, it’s
taken to mean that the method won’t change the receiving object during the course of its
execution. Restated, the const marks the receiving object—the object that’s addressed
by the this pointer—as immutable.

Note that getX and getY are each const methods, but translate isn’t. getX and getY
don’t need to change x and y fields in order to read them, and that’s why there’s const
methods. translate does change the receiving object, though: It shifts x and y values
by the specified deltas.

 2

What about the exposed implementations? That’s normally a no-no, but when the
implementations are super short and super duper obvious, most C++ programmers opt
to inline the implementations of trivial one-liner methods right there in the .h file. Yes,
you’re technically exposing trade secrets, but are they really trade secrets when the
implementation couldn’t be anything else? [Answer: no] At the very least, inlining
simplifies the development process and allows you to implement trivial methods
without lots of .cc boilerplate. And because the inlined code is exposed during
compilation, compilers are able to optimize and reduce the overhead associated with
calling and returning from getX and getY.

The constructor and the translate method are complex enough—complex meaning more
than one line—that we type them up as we normally would within a .cc file:

point::point(double x, double y)
{
 this->x = x;
 this->y = y;
}

void point::translate(double deltax, double deltay)
{
 x += deltax;
 y += deltay;
}

This is all standard fare, and you know precisely what’s going on here. The only feature
I’m not sure you’ve all seen before if the use of the this point to disambiguate between x
the data field and x the parameter. Whenever a local variable and an object’s data field
share the same name, all references to that name are references to the local variable.
[You’ll hear programming language snobs enthusiasts say that the local variable x
shadows the object data field called x.]

Rectangles
Now let’s model rectangles—but only those that are aligned with the x and y axes. For
those who’ve not seen rectangles in a while, here are a few:

 3

There are several reasonable ways to model a rectangle, but we’ll pretend the only
sensible approach is the track a rectangle’s lower left and upper right corners. Since the
sides of all rectangles are normal to the x and y axes, we know what the rectangle must
look like:

Here’s the class definition:

class rectangle {

 public:
 rectangle(double llx, double lly, double width, double height);

 double getArea() const { return area; }
 void translate(double deltax, double deltay);

 private:
 point ll;
 point ur;
 double area;
};

The implementation of getArea is painfully obvious, so that’s why it’s inlined (the
constructor will initialize the area field—more on that in a second). And the
implementation of translate is also pretty simple:

void rectangle::translate(double deltax, double deltay)
{
 ll.translate(deltax, deltay);
 ur.translate(deltax, deltay);
}

The most interesting thing about this rectangle class is its constructor. Incoming CS107
students could be convinced the following implementation would work:

rectangle::rectangle(double llx, double lly, double width, double height)
{
 ll = point(llx, lly);
 ur = point(llx + width, lly + height);
 area = width * height;
}

Let’s keep talking as if this is all correct. The first line constructs an anonymous point
constant out of llx and lly so that ll can be initialized. The second line does that

 4

same thing on behalf of ur, and the third line pre-computes the rectangle’s area and
caches it for the benefit of getArea.

As it turns out, the above implementation won’t even compile. The problem? ll and ur
are full objects embedded within the rectangle. ll and ur aren’t pointers to external
points—nope, the records making up ll and ur are wedged inside the rectangle like
two boxes within a larger one.

C++ constructors are written with the understanding that all direct embedded objects
are fully constructed by what’s called an initialization list. The initialization list is a
comma-delimited list of constructor calls that sits in between the parameter list and the
opening curly brace of the constructor’s body. Here’s the real rectangle constructor:

rectangle::rectangle(double llx, double lly, double width, double height) :
 ll(llx, lly), ur(llx + width, lly + height)
{
 area = width * height;
}

This compiles, because the initialization list specifies exactly how the two embedded
points should be constructed. The location of the initialization list suggests that the
construction of a rectangle is realized as the simultaneous construction of the lower left
and upper right corners.

Why is the first version incorrect? I could just say it’s because we failed to include ll
and ur on the initialization list, but that’s not telling the full story. The more
sophisticated explanation: whenever you omit a direct embedded object from the
initialization list, the compiler assumes you just want to initialize it using its zero-
argument constructor. Since the point class doesn’t provide a zero-argument
constructor (we displaced the compiler-synthesized version when we provided our two-
argument one), it’s an error to invoke one.

Normally, you only include something on the initialization list if absolutely needs to be
there. But you’re allowed to list any field—including those that are primitives—on the
initialization list if you want to. So while I prefer the first version, we could have written
this instead:

rectangle::rectangle(double llx, double lly, double width, double height) :
 ll(llx, lly), ur(llx + width, lly + height), area(width * height) {}

Initialization lists are the only avenue for initializing fields that are embedded objects,
references, or constants. Otherwise, a field can be initialized within the body of the
constructor.

 5

You’ll notice that neither the point class nor the rectangle class provides a destructor.
Whenever a class definition omits the destructor from the interface, the compiler
synthesizes a public destructor with an empty body. In the case of the point class, that’s
just fine: We gain nothing by setting x and y fields to 0.0 if the memory around those x
and y fields is going away. The compiler-synthesized rectangle destructor also does
the right thing: it levies the point destructor against the ur field, and then levies the
same destructor against the ll field.

Polygons
The polygon class generalizes the notion of a shape in two-dimensional space. In
particular, it’s designed to model a closed region that’s cleanly held by a collection of
line segments, as with:

I back the polygon by a vector of points, where the order of the points is consistent
with the order I’d discover vertices if I walked along its perimeter.

class polygon {

 public:
 polygon(const point vertices[], int numVertices);
 polygon(const vector<point>& vertices);

 double getArea() const;
 void translate(double deltax, double deltay);

 private:
 double computeArea() const;
 mutable bool areaPreviouslyComputed;
 mutable double area;
 vector<point> vertices;
};

 6

Here’s the code for the two constructors:

polygon::polygon(const point vertices[], int numVertices) :
 vertices(vertices, vertices + numVertices)
{
 areaPreviouslyComputed = false;
}

polygon::polygon(const vector<point>& vectices) :
 vertices(vertices)
{
 areaPreviouslyComputed = false;
}

I used two vector constructors (I have no choice: The vector<point> is wedged
inside the polygon) to get most of the work done. Dinkumware
(http://www.dinkumware.com/manuals) provides some nifty documentation for all
of the vector constructors. We’re only interested in using the sixth and seventh flavors,
but here’s everything in its full glory:

vector();
explicit vector(const Alloc& al);
explicit vector(size_type count);
vector(size_type count, const Ty& val);
vector(size_type count, const Ty& val, const Alloc& al);
vector(const vector& right);
template<class InIt>
 vector(InIt first, InIt last);
template<class InIt>
 vector(InIt first, InIt last, const Alloc& al);

All constructors store an allocator object and initialize the controlled sequence.
The allocator object is the argument al, if present. For the copy constructor, it is
right.get_allocator(). Otherwise, it is Alloc().

The first two constructors specify an empty initial controlled sequence. The third
constructor specifies a repetition of count elements of value Ty(). The fourth
and fifth constructors specify a repetition of count elements of value val. The
sixth constructor specifies a copy of the sequence controlled by right. If InIt is
an integer type, the last two constructors specify a repetition of
(size_type)first elements of value (Ty)last. Otherwise, the last two
constructors specify the sequence [first, last).

Don’t worry about Alloc, size_type, or explicit. We’ll get there.

 7

The translation process is trivial:

void polygon::translate(double deltax, double deltay)
{
 for (unsigned int i = 0; i < vertices.size(); i++) {
 vertices[i].translate(deltax, deltay);
 }
}

But computing the area is actually a little bit of work—enough that I’ve elected to only
compute it if getArea is actually called during runtime. The algorithm for computing a
polygon’s area is based on Green’s Theorem, which itself is the discrete, two-
dimensional equivalent of the Stokes’ Theorem.

The intention here is to compute the area when and only when we really need it, and to
cache the area somewhere so that subsequent calls to getArea can return the previously
computed result. This caching thing—actually quite clever, in my opinion—means that
some of the data members with a polygon need to be updated by the implementation of
getArea. Normally, that would means that getArea would need to be non-const.

But there’s a good reason why getArea should be const anyway—it’s not necessary
for the implementation to change the object, since it could just re-compute the area in a
read-only manner every single time. We’re electing to cache the result, just to make
things run faster. And clients of the polygon class might want to get the area of some
constant polygon, and they’d be blocked if getArea were left as non-const.

The polygon is logically constant—the abstract polygon it represents isn’t moving or
otherwise changing. But we’d like to be able to change some fields within to cache the
area and know we’ve cached it. In other words, we’d like some fields to be mutable
anyway, even if the object is logically constant.

Enter the mutable keyword, which can be used to decorate a field within an object. A
mutable field can always be changed, even within the scope of a const method. You
shouldn’t use mutable all that often—only when you need to do something like this:

double polygon::getArea() const
{
 if (!areaPreviouslyComputed) {
 area = computeArea();
 areaPreviouslyComputed = true;
 }
 return area;
}

double polygon::computeArea() const
{
 double area = 0.0;
 unsigned int size = vertices.size();

 8

 for (unsigned int i = 0; i < size; i++) {
 area += 0.5 * (vertices[i].getX() * vertices[(i + 1) % size].getY());
 area -= 0.5 * (vertices[(i + 1) % size].getX() * vertices[i].getY());
 }

 if (area < 0.0) area = -area;
 return area;
}

