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Constructors and Destructors 

 
point class 
Let’s start with a simple, object-oriented model of a point in two-dimensional space: 
 

class point { 
 
 public: 
  point(double x, double y); 
   
  double getX() const { return x; } 
  double getY() const { return y; } 
  void translate(double deltax, double deltay); 
  
 private: 
  double x; 
  double y; 
}; 
 

I’m hoping there’s very little mystery.  The point class is a glorified struct that 
encapsulates the data and provides access to that data via public methods.  There’s a 
simple constructor that mandates x and y values be specified the instant a point is 
declared.  And translate is the only method in place to change a point once it’s been 
created. 
 
If you learned C++ here at Stanford, it’s likely some of the above is confusing.  I’m 
guessing there are your question: 
 

• What does const mean? 
• Why are the implementations of getX and getY exposed in the class definition?  

Aren’t we exposing some secret that supposed to be hidden away in some .cc 
file? 

 
const is a big thing in C++, but it’s complicated enough that we avoid it in the CS106 
curriculum.   When the const keyword is typed after the signature of a method, it’s 
taken to mean that the method won’t change the receiving object during the course of its 
execution.  Restated, the const marks the receiving object—the object that’s addressed 
by the this pointer—as immutable. 
 
Note that getX and getY are each const methods, but translate isn’t.  getX and getY 
don’t need to change x and y fields in order to read them, and that’s why there’s const 
methods.  translate does change the receiving object, though: It shifts x and y values 
by the specified deltas. 
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What about the exposed implementations?  That’s normally a no-no, but when the 
implementations are super short and super duper obvious, most C++ programmers opt 
to inline the implementations of trivial one-liner methods right there in the .h file.  Yes, 
you’re technically exposing trade secrets, but are they really trade secrets when the 
implementation couldn’t be anything else?  [Answer: no]  At the very least, inlining 
simplifies the development process and allows you to implement trivial methods 
without lots of .cc boilerplate.  And because the inlined code is exposed during 
compilation, compilers are able to optimize and reduce the overhead associated with 
calling and returning from getX and getY. 
 
The constructor and the translate method are complex enough—complex meaning more 
than one line—that we type them up as we normally would within a .cc file: 
 

point::point(double x, double y) 
{ 
 this->x = x; 
 this->y = y; 
} 
 
void point::translate(double deltax, double deltay) 
{ 
 x += deltax; 
 y += deltay; 
} 

 
This is all standard fare, and you know precisely what’s going on here.  The only feature 
I’m not sure you’ve all seen before if the use of the this point to disambiguate between x 
the data field and x the parameter.  Whenever a local variable and an object’s data field 
share the same name, all references to that name are references to the local variable. 
[You’ll hear programming language snobs enthusiasts say that the local variable x 
shadows the object data field called x.] 
 
Rectangles 
Now let’s model rectangles—but only those that are aligned with the x and y axes.  For 
those who’ve not seen rectangles in a while, here are a few: 
 
 
 
 
 
 
 
 



  3  

There are several reasonable ways to model a rectangle, but we’ll pretend the only 
sensible approach is the track a rectangle’s lower left and upper right corners.  Since the 
sides of all rectangles are normal to the x and y axes, we know what the rectangle must 
look like: 
 
 
 
 
 
 
 
Here’s the class definition: 
 

class rectangle { 
 
 public: 
  rectangle(double llx, double lly, double width, double height); 
   
  double getArea() const { return area; } 
  void translate(double deltax, double deltay); 
  
 private: 
  point ll; 
  point ur; 
  double area; 
}; 

 
The implementation of getArea is painfully obvious, so that’s why it’s inlined (the 
constructor will initialize the area field—more on that in a second).  And the 
implementation of translate is also pretty simple: 
 

void rectangle::translate(double deltax, double deltay) 
{ 
 ll.translate(deltax, deltay); 
 ur.translate(deltax, deltay); 
} 

 
The most interesting thing about this rectangle class is its constructor.  Incoming CS107 
students could be convinced the following implementation would work: 
 

rectangle::rectangle(double llx, double lly, double width, double height) 
{ 
 ll = point(llx, lly); 
 ur = point(llx + width, lly + height); 
 area = width * height; 
} 
 

Let’s keep talking as if this is all correct.  The first line constructs an anonymous point 
constant out of llx and lly so that ll can be initialized.  The second line does that 
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same thing on behalf of ur, and the third line pre-computes the rectangle’s area and 
caches it for the benefit of getArea. 
 
As it turns out, the above implementation won’t even compile.  The problem? ll and ur 
are full objects embedded within the rectangle.  ll and ur aren’t pointers to external 
points—nope, the records making up ll and ur are wedged inside the rectangle like 
two boxes within a larger one. 
 
C++ constructors are written with the understanding that all direct embedded objects 
are fully constructed by what’s called an initialization list.  The initialization list is a 
comma-delimited list of constructor calls that sits in between the parameter list and the 
opening curly brace of the constructor’s body.  Here’s the real rectangle constructor: 
 

rectangle::rectangle(double llx, double lly, double width, double height) :  
 ll(llx, lly), ur(llx + width, lly + height) 
{ 
 area = width * height; 
} 

 
This compiles, because the initialization list specifies exactly how the two embedded 
points should be constructed.  The location of the initialization list suggests that the 
construction of a rectangle is realized as the simultaneous construction of the lower left 
and upper right corners. 
 
Why is the first version incorrect?  I could just say it’s because we failed to include ll 
and ur on the initialization list, but that’s not telling the full story.  The more 
sophisticated explanation: whenever you omit a direct embedded object from the 
initialization list, the compiler assumes you just want to initialize it using its zero-
argument constructor.  Since the point class doesn’t provide a zero-argument 
constructor (we displaced the compiler-synthesized version when we provided our two-
argument one), it’s an error to invoke one. 
 
Normally, you only include something on the initialization list if absolutely needs to be 
there.  But you’re allowed to list any field—including those that are primitives—on the 
initialization list if you want to.  So while I prefer the first version, we could have written 
this instead: 
 

rectangle::rectangle(double llx, double lly, double width, double height) :  
 ll(llx, lly), ur(llx + width, lly + height), area(width * height) {} 

 
Initialization lists are the only avenue for initializing fields that are embedded objects, 
references, or constants.  Otherwise, a field can be initialized within the body of the 
constructor. 
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You’ll notice that neither the point class nor the rectangle class provides a destructor.  
Whenever a class definition omits the destructor from the interface, the compiler 
synthesizes a public destructor with an empty body.  In the case of the point class, that’s 
just fine: We gain nothing by setting x and y fields to 0.0 if the memory around those x 
and y fields is going away.  The compiler-synthesized rectangle destructor also does 
the right thing: it levies the point destructor against the ur field, and then levies the 
same destructor against the ll field. 
 
Polygons 
The polygon class generalizes the notion of a shape in two-dimensional space.  In 
particular, it’s designed to model a closed region that’s cleanly held by a collection of 
line segments, as with: 
 
 
 
 
 
 
 
 
I back the polygon by a vector of points, where the order of the points is consistent 
with the order I’d discover vertices if I walked along its perimeter. 

 
class polygon { 
 
 public: 
  polygon(const point vertices[], int numVertices); 
  polygon(const vector<point>& vertices); 
  
  double getArea() const; 
  void translate(double deltax, double deltay); 
   
 private: 
  double computeArea() const; 
  mutable bool areaPreviouslyComputed; 
  mutable double area; 
  vector<point> vertices; 
}; 
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Here’s the code for the two constructors: 
 
polygon::polygon(const point vertices[], int numVertices) :  
 vertices(vertices, vertices + numVertices)  
{ 
 areaPreviouslyComputed = false; 
} 
 
polygon::polygon(const vector<point>& vectices) :  
 vertices(vertices)  
{ 
 areaPreviouslyComputed = false;  
} 

 
I used two vector constructors (I have no choice: The vector<point> is wedged 
inside the polygon) to get most of the work done.  Dinkumware 
(http://www.dinkumware.com/manuals) provides some nifty documentation for all 
of the vector constructors.  We’re only interested in using the sixth and seventh flavors, 
but here’s everything in its full glory: 
 

vector(); 
explicit vector(const Alloc& al); 
explicit vector(size_type count); 
vector(size_type count, const Ty& val); 
vector(size_type count, const Ty& val, const Alloc& al); 
vector(const vector& right); 
template<class InIt> 
    vector(InIt first, InIt last); 
template<class InIt> 
    vector(InIt first, InIt last, const Alloc& al); 

 
All constructors store an allocator object and initialize the controlled sequence. 
The allocator object is the argument al, if present. For the copy constructor, it is 
right.get_allocator(). Otherwise, it is Alloc(). 
 
The first two constructors specify an empty initial controlled sequence. The third 
constructor specifies a repetition of count elements of value Ty(). The fourth 
and fifth constructors specify a repetition of count elements of value val. The 
sixth constructor specifies a copy of the sequence controlled by right. If InIt is 
an integer type, the last two constructors specify a repetition of 
(size_type)first elements of value (Ty)last. Otherwise, the last two 
constructors specify the sequence [first, last). 

 
Don’t worry about Alloc, size_type, or explicit.  We’ll get there. 
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The translation process is trivial: 
 

void polygon::translate(double deltax, double deltay) 
{ 
 for (unsigned int i = 0; i < vertices.size(); i++) { 
  vertices[i].translate(deltax, deltay); 
 } 
} 
 

But computing the area is actually a little bit of work—enough that I’ve elected to only 
compute it if getArea is actually called during runtime.  The algorithm for computing a 
polygon’s area is based on Green’s Theorem, which itself is the discrete, two-
dimensional equivalent of the Stokes’ Theorem. 
 
The intention here is to compute the area when and only when we really need it, and to 
cache the area somewhere so that subsequent calls to getArea can return the previously 
computed result.  This caching thing—actually quite clever, in my opinion—means that 
some of the data members with a polygon need to be updated by the implementation of 
getArea.  Normally, that would means that getArea would need to be non-const. 
 
But there’s a good reason why getArea should be const anyway—it’s not necessary 
for the implementation to change the object, since it could just re-compute the area in a 
read-only manner every single time.  We’re electing to cache the result, just to make 
things run faster.  And clients of the polygon class might want to get the area of some 
constant polygon, and they’d be blocked if getArea were left as non-const.   
 
The polygon is logically constant—the abstract polygon it represents isn’t moving or 
otherwise changing.  But we’d like to be able to change some fields within to cache the 
area and know we’ve cached it.  In other words, we’d like some fields to be mutable 
anyway, even if the object is logically constant. 
 
Enter the mutable keyword, which can be used to decorate a field within an object.  A 
mutable field can always be changed, even within the scope of a const method.  You 
shouldn’t use mutable all that often—only when you need to do something like this: 

 
double polygon::getArea() const 
{ 
 if (!areaPreviouslyComputed) { 
  area = computeArea(); 
  areaPreviouslyComputed = true; 
 } 
 return area; 
} 

 
double polygon::computeArea() const 
{ 
 double area = 0.0; 
 unsigned int size = vertices.size(); 
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 for (unsigned int i = 0; i < size; i++) { 
  area += 0.5 * (vertices[i].getX() * vertices[(i + 1) % size].getY()); 
  area -= 0.5 * (vertices[(i + 1) % size].getX() * vertices[i].getY()); 
 } 
  
 if (area < 0.0) area = -area; 
 return area; 
} 

 


