
CS106X Handout 35
Autumn 2019 November 21, 2019

CS106X Midterm Examination

This is an open-book, open-note, closed-electronic-device exam. You have 90 minutes to
complete it.

Good luck!

Section Leader: _____________________

Last Name: _____________________

First Name: _____________________

SUNet ID: _____________________@stanford.edu

I accept the letter and spirit of the honor code.

 (signed) __

 Score Grader

1. Linked Lists [10] ______ ______

2. Trie Insertion Traces [10] ______ ______

3. All Things Tree [15] ______ ______

Total [35] ______ ______

 2

Problem 1: Linked Lists [10 points]

a. [5 points] Implement a predicate function called contains that walks a singly linked list
for value and returns true if and only if the element is found, and false otherwise.
Additionally, if value is found, then contains should splice the node storing value
out of the list and prepend it to the front (unless the node was already at the front, in
which case it should be left alone). The result is a linked list storing the same information,
except the key of interest now resides at the front. If searching for a key is likely to be
followed by repeated search for it—in practice, not at all unusual—then these types of
updates can reduce the average running times of searches, since frequently accessed
values will generally be closer to the front of the list.

Use the rest of this page to present your implementation:

 struct node {
 int value;
 node *next;
 };

 static bool contains(node *& list, int value) {

 3

b. [5 points] Implement a function called mirror which accepts a linked list of integers and
appends the reverse of that list to its end, resulting in a list that’s twice the length. That
means that mirror would transform the list

3 ® 4 ® 1 ® 5 ® 1
into

3 ® 4 ® 1 ® 5 ® 1 ® 1 ® 5 ® 1 ® 4 ® 3

Use the same node definition used for part a, and use the rest of this page to present your
implementation:

 static void mirror(node *list) {

 4

Problem 2: Trie Insertion Trace [10 points]

Assume the following node definition for a trie:

struct node {
 bool isWord;
 Map<char, node *>;
};

and consider the following two recursive implementations, each of which works to ensure the
nodes needed to encode a word all exist.

node *ensureNodeExists1(node *root, const string& str, int pos = 0) {
 if (root == NULL) root = new node;
 if (pos == str.size()) return root;
 node *child = root->suffixes[str[pos]];
 return ensureNodeExists1(child, str, pos + 1);
}

node *ensureNodeExists2(node *& root, const string& str, int pos = 0) {
 if (root == NULL) root = new node;
 if (pos == str.size()) return root;
 node *&child = root->suffixes[str[pos]];
 return ensureNodeExists2(child, str, pos + 1);
}

For this problem, you’re to assume the
illustration to the right precisely captures how
word (of type string) and myroot (of type
node *) have been initialized just prior to a
call one of the two functions above.

On the next two pages, you’ll draw full
memory traces to highlight why
ensureNodeExists1 fails to fully work
even though ensureNodeExists2 does.

word

myroot

false
b c

false
e

true
d

true

false
a

false
b g

true false
e

true
d

true

"beat"

 5

Problem 2: Trie Insertion Trace [continued]

a. [5 points] Draw the state of memory when a call to ensureNodeExists1(myroot, word)
bottoms out, just before its return root statement executes. You’ll want to draw all of the
parameters for all recursive calls, being clear what each of the parameters associated with each
of the recursive calls contains. If you need to add key values to suffixes in any of the
existing nodes, just draw them in as cleanly as possible.

node *ensureNodeExists1(node *root, const string& str, int pos = 0) {
 if (root == NULL) root = new node;
 if (pos == str.size()) return root;
 node *child = root->suffixes[str[pos]];
 return ensureNodeExists1(child, str, pos + 1);
}

word

myroot

false
b c

false
e

true
d

true

false
a

false
b g

true false
e

true
d

true

"beat"

 6

Problem 2: Trie Insertion Trace [continued]

b. [5 points] Now draw the state of memory when ensureNodeExists2(myroot, word)
bottoms out, just before its own return root statement executes. You’ll want to draw all of
the parameters for all recursive calls, being clear what each of the parameters associated with
each of the recursive calls contains. If you need to add key values to suffixes in any of the
existing nodes, just draw them in as cleanly as possible.

node *ensureNodeExists2(node *& root, const string& str, int pos = 0) {
 if (root == NULL) root = new node;
 if (pos == str.size()) return root;
 node *&child = root->suffixes[str[pos]];
 return ensureNodeExists2(child, str, pos + 1);
}

word

myroot

false
b c

false
e

true
d

true

false
a

false
b g

true false
e

true
d

true

"beat"

 7

Problem 3: All Things Tree [15 points]

a. [7 points] Assume the following node definition for a binary search tree:

 struct node {
 int value;
 node *left, *right;
 };

Implement a function called contract, which converts a
binary search tree into a full binary search tree by
removing and deleting all half nodes—that is, internal
nodes with only one child. If, for instance, the root of the binary search
tree on the upper right is passed to our contract function, the tree
would be transformed into the binary search tree below it.

Use the rest of this page to present your recursive implementation:

 static void contract(node *& root) {

99

30

18

52

11

55

86

98 65

56 73

11

52

86

98 65

56 73

 8

Problem 3: All Things Tree [continued]

b. [8 points] There are five valid binary search tree
structures on three keys, and you can see what
they are on the right. For this problem, you’re to
write a function that recursively constructs all
valid binary search storing the first n positive
integers and returns them in an unordered
Set<node *>. So, a call to construct(3)
would return a Set storing the roots of the five
trees on the right. None of the trees should share
any memory whatsoever.

Use the rest of this page to present your implementation. You needn’t worry about
deleting any excess memory, and you can assume the existence of a cloneTree
function, which accepts the root of a binary tree and returns the root of a deep copy—that
is, a replica of the full tree that doesn’t share any memory with the original.

static node *cloneTree(node *) { // assume it’s implemented }
static Set<node *> construct(int n) {

