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Problem 1: Dictionaries and Ternary Search Trees 

The Dictionary class is a specialized data structure storing all of the English words along 
with their definitions.  Because many words have multiple definitions, each word maps not 
to a single string but a Vector of them. 
 
The Dictionary is backed by a data structure called a ternary search tree.  Ternary 
search trees are hybrids of two data structures we've studied extensively over the past few 
lectures: binary search trees and tries.  Binary trees are space efficient in that the amount of 
memory used is proportional to the number of entries it stores.  Tries are exceptionally fast, 
because the time to look up, insert, or delete any single word is bounded by the length of 
its longest word.  Ternary search trees combine elements of the two.  Like binary search 
trees, they are space efficient, except that its nodes have three children instead of two.  Like 
tries, they proceed character by character during a search. 
 
A search compares the current character in the key to the letter embedded in a node.  If the 
current character is less, the search continues along the less pointer.  If the search character 
is greater, the search follows the greater pointer.  If the characters match, then the search 
carries on via the equal pointer but proceeds to the next character in the key. 
 
Here’s the header file for the TST-backed Dictionary: 

 
class Dictionary { 
public: 
 Dictionary() { root = NULL; } // inline the obvious implementation 
 ~Dictionary(); 
  
 void add(const string& word, const string& definition); 
  
private: 
 struct node { 
  char letter; 
  Vector<string> *definitions; 
  node *less, *equal, *greater; 
 }; 
 
 node *root; 
}; 

 
If the string represented by a particular node is a word in the Dictionary, then that 
node's definitions field stores the address of a dynamically allocated 
Vector<string> to store the definitions in the order they were inserted.  If the string 
represented by a particular node is not itself a word but rather a prefix of one or more 
words, then that node’s definitions field stores NULL. 
 
You’re to implement the one public method and the destructor. 
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Before you get started on the code, let’s be clear about what the  
TST-backed Dictionary would look like if the words "pig", 
"cow", "cop" and "cozy" were inserted, in that order.  
  
Since "pig" was inserted into an empty TST, the path  
inserted on its behalf is a straight line down to the  
fringe, and that path length is equal to the word length.  
When "cow" is inserted, its 'c' mismatches the 
'p' at the root, so insertion veers left, since 'c' is   
less than 'p'.  Similarly, when "cop" is inserted,  
The leading 'c' mismatches the 'p' at the root,  
So insertion veers left as it did for "cow".  The 
"co" of "cop" matches the "co" of "cow", but  
the 'p' mismatches the previously inserted 'w'.  In 
general, the path length is often greater than the 
length of the string it represents. 
 
 

 
 

 
 

 
 

 
 
 
Note that the node 
surrounding the last letter of a 
word is the one that stores the address of the dynamically allocated 
Vector<string>. 
 
a. Present your implementation of the add method, which ensures 

that the specified word gets added if it isn’t already and appends   
the specified definition (even if it’s a duplicate) to the end of its Vector of definitions.  
Make sure you properly allocate and initialize any nodes that need to be incorporated. 
And be sure to properly allocate space for the Vector<string> whenever a word is 
inserted for the very first time. 

 
 void Dictionary::add(const string& word, const string& definition); 

 
b. Now implement the destructor to properly dispose of all dynamically allocated memory 

that’s been allocated over the course of the Dictionary’s lifetime. 
 

 Dictionary::~Dictionary(); 
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Problem 2: Regular Expressions 

Regular expressions are, for the purposes of this problem, comprised of lowercase 
alphabetic letters along with the characters *, +, and ?.  In these regular expressions, the 
lowercase letters match themselves.  * is always preceded by an alphabetic character and 
matches zero or more instances of the preceding letter.  + is similar to *, except that it 
matches 1 or more instances of the preceding letter.  ? states the preceding letter may 
appear 0 or 1 times.  Here are some examples of these regular expressions: 

 
grape   matches grape as a word and nothing else 
letters?  matches letter and letters, but nothing else 
a?b?c?   matches a, b, c, ab, ac, bc, abc, and the empty string 
lolz*   matches lol, lolz, lolzz, lolzz, and so forth 
lolz+   matches lolz, lolzz, lolzzz, and so forth 
 

All of the *, + and ? characters must be preceded by lowercase alphabetic letters, or else 
the regular expression is illegal. 

 
Regular expressions play nicely with the trie data structure we discussed in lecture last 
week.  We’ll use this exposed data structure to represent the trie: 

 
struct node { 
 bool isWord; 
 Map<char, node *> suffixes; 
}; 
 

Write the matchAllWords function, which takes a trie of words (via its root node address) 
and a regular expression as described above, and populates the supplied Set<string>, 
assumed to be empty, with all those words in the trie that match the regular expression. 
 

static void matchAllWords(const node *trie, const string& regex,  
                          Set<string>& matches); 

 

Problem 3: People You May Know 

Because Facebook is interested in growing out its social graph, users are often presented 
with a list of other users they might be friends with even though that friendship isn’t 
officially recorded.  That list is drawn from the set of Facebook users who are strictly two 
degrees away from you—that is, the list of your friends’ friends that aren’t already friends 
with you. 
 
Assume that the following node definition is used to represent a Facebook user: 

 
struct user { 
 int userID;    // unique 
 string name;   // not necessarily unique 
 Set<user *> friends; // assume friendship is symmetric  
}; 
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a. Write a function called getFriendsOfFriends, which given the address of your 
node in the social graph, returns as a Set the collection of nodes representing those on 
Facebook who are two degrees away from you.  (Assume the logged in user is 0 hops 
away from him or herself and shouldn’t be included.) 

 
  static Set<user *> getFriendsOfFriends(user *loggedinuser); 
 
b. [Credit: Zach Birnholz] Now write the more general getKthDegreeFriends function 

that given the address of a user node and an integer k returns the set of Facebook users 
who are precisely k hops away. 

 
  static Set<user *> getKthDegreeFriends(user *loggedinuser, int k); 
 

Problem 4: Detecting Cycles 

Given access to a graph (in the form of the exposed graph introduced in lecture), write a 
predicate called containsCycle, which returns true if there are any cycles whatsoever 
in the graph, and false otherwise.  The ability to detect cycles, and the ability to confirm 
that the addition of an edge doesn’t introduce cycles, is important for some applications 
(e.g. your final assignment, Stanford 1-2-3, needs to confirm that no two cell formulas 
mutually depend—directly or eventually—on each other, and C++ compilers sometimes 
elect to check that no two header files mutually #include one an other). 
 

static bool containsCycle(graph& g); 
 


