
CS106X Handout 30 
Autumn 2019 November 4th, 2019 

Section Handout 
 
Problem 1: Cartesian Trees 

A Cartesian tree is a binary tree structure derived from an 
array of numbers such that the tree respects the min-heap 
property (value at the parent is less than the values of the 
two children) and an inorder traversal of the tree produces 
the original array sequence.  The picture presented on the 
right (credit: Wikipedia) illustrates how an integer array 
and the corresponding Cartesian tree are related. 
 
Write a function called arrayToCartesianTree, 
which accepts a reference to a constant Vector<int> of unique positive integers, 
synthesizes the corresponding Cartesian tree, and returns its root.  The problem relies on 
the existence of the following type definition: 

 
struct node { 
 int value; 
 node *left, *right; 
}; 
 
static node *arrayToCartestianTree(const Vector<int>& inorder); 

 

Problem 2: Patricia Trees 

Consider the following illustration: 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
What’s drawn above is an example of a Patricia tree—similar to a trie in that each node 
represents some prefix in a set of words.  The child pointers, however, are more elaborate, 

root 

false 

false 

"cra" 

"nium" "zy" 

true true 

true 

"go" 

"lf" "ober" 

true true 

true 

"ing" 

false 

"p" 

false true true 

"undit" 
"e" "ork" 

true true true 

"g" "rky" "tulance" 



  2  

in that they not only identify the sub-tree of interest, but they carry the substring of 
characters that should contribute to the running prefix along the way.  Sibling pointers 
aren’t allowed to carry substrings that have common prefixes, because the tree could be 
restructured so that the common prefix is merged into its own connection.  By imposing 
that constraint, that means there’s at most one path that needs to be explored when 
searching for any given word. 
 
The children are lexicographically sorted, so that all strings can be easily reconstructed in 
alphabetical order.  When a node contains a true, it means that the prefix it represents is 
also a word in the set of words being represented.  [The root of the tree always represents 
the empty string.] 
 
So, the tree above stores the following words: 

 
cranium, crazy, go, golf, golfing, goober, peg, perky, petulance, pork, and pundit. 

 
These two type definitions can be used to manage such a tree. 

 
struct connection { 
 string letters; 
 struct node *subtree; // will never be NULL 
}; 
 
struct node { 
 bool isWord; 
 Vector<connection> children;  // empty if no children 
}; 
 

Implement the containsWord function, which accepts the root of a Patricia tree and a 
word, and returns true if and only if the supplied word is present.  Even though the 
connections descending from each node are sorted alphabetically, you should just do a 
linear search across them to see which one, if any, is relevant. 
 

static bool containsWord(const node *root, const string& word); 
 

Problem 3: Exponential Trees 

Exponential trees are similar to binary search trees, except that the depth of the node in the 
tree dictates how many elements it can store.  The root of the tree is at depth 1, so it 
contains 1 element and two children.  The root of a tree storing strings might look like this: 
 
 
 
 
 
 
 
 
 

everything < "fa" everything > "fa" 

fa 



  3  

 
If completely full, a node at depth 2—perhaps the right child of the above root node—
might look like this: 
 
 
 
 
 
 
 
 
 
 
 
Generally speaking, a node at depth d can accommodate up to d elements. Those d 
elements are stored in sorted order within a Vector<string>, and they also serve to 
distribute all child elements across the d + 1 sub-trees. 
 
We can use the following data structure to build up and manage an exponential tree: 

 
struct expnode { 
 int depth;     // depth of the node within the tree 
 Vector<string> values;  // stores up to depth keys in sorted order 
 expnode **children;  // set to NULL until node is saturated. 
}; 
 
• Each node must keep track of its depth, because the depth alone decides how 

many elements it can hold, and how many sub-trees it can support. 
• The string values are stored in the values vector, which maintains all of the strings 

it’s storing in sorted order.  We use a Vector<string> instead of an exposed 
array, because the number of elements stored can vary from 0 to depth. 

• children is a dynamically allocated array of pointers to sub-trees.  The children 
pointer is maintained to be NULL until the values vector is full, at which point the 
children pointer is set to be a dynamically allocated array of depth + 1 pointers, 
all initially set to NULL.  Any future insertions that pass through the node will 
actually result in an insertion into one of depth + 1 sub-trees. 

 
a. Draw the exponential tree that results from inserting the following strings in the 

specified left-to-right order: 
 

"do" "re" "mi" "fa" "so" "la" "ti" 
 

b. Implement the expTreeContains predicate function, which given the root of an 
exponential tree and a string, returns true if and only if the supplied string is present 
somewhere in the tree, and false otherwise.  Your function should only visit nodes 
that lead to the string of interest.  Your implementation can rely on the implementation 
of find, which accepts a sorted string vector and a new string value and returns the 

mi re 

everything > "fa"   
everything < "mi" 

everything > "re" 

everything > "mi"   
everything < "re" 



  4  

smallest index within the vector where value can be inserted while maintaining sorted 
order. 

 
static int find(const Vector<string>& v, const string& value) { 

  for (int pos = 0; pos < v.size(); pos++) { 
  if (value <= v[pos]) { 
   return pos;  
  } 
 } 
  
 return v.size(); 
} 

 
static bool expTreeContains(const expnode *root, const string& value); 
 

c. Write the expTreeInsert function, which takes the root of an exponential tree [by 
reference] and the value to be inserted, and updates the tree to include the specified 
value, allocating and initializing new expnodes and arrays of expnode *s as needed.  
Ensure that you never extend a values vector beyond a length that matches the node’s 
depth.  Feel free to rely on find from part b. 
 

static void expTreeInsert(expnode *& root, const string& value); 
 

d. Finally, write the expNodeDispose function, which recursively disposes of the entire 
tree rooted at the specified address. 
 
 static void expTreeDispose(expnode *root); 

 

 


