
CS106X Handout 29

Autumn 2019 November 4th, 2019

Assignment 6: Huffman
Thanks to Owen Astrachan (Duke) and Julie Zelenski for creating this.

Modifications by Keith Schwarz, Stuart Reges, Marty Stepp.

This assignment focuses on binary trees and priority queues. We provide you with several
other support files, but you should not modify them. For example, we provide you with a
huffmanmain.cpp that contains the program's overall text menu system; you must
implement the functions it calls to perform various file compression / decompression
operations.

Due: Monday, November 11th, 2019 at 11:59pm
Huffman Encoding
Huffman encoding is an algorithm devised by
David A. Huffman of MIT in 1952 for
compressing text data to make a file occupy a
smaller number of bytes. This relatively simple
compression algorithm is powerful enough that
variations of it are still used today in computer
networks, HDTV, and other applications.
Normally text data is stored in a standard format
of 8 bits per character using an encoding called
ASCII that maps every character to a binary
integer value from 0-255.

The idea of Huffman encoding is to abandon the
rigid 8-bits-per-character requirement and use
variable-length binary encodings for different
characters. The advantage of doing this is that if
a character occurs frequently in the file, such as
the common letter 'e', it could be given a
shorter encoding (fewer bits), making the file
smaller. The tradeoff is that some characters may need to use encodings that are longer
than 8 bits, but this is reserved for characters that occur so infrequently that the extra cost is
worth it.

The table below compares ASCII values of various characters to possible Huffman
encodings for some English text. Frequent characters such as space and 'e' have short
encodings, while rare ones like 'x' and 'z' have longer ones.

Welcome to CS 106X Shrink-It!
...
1) build character frequency table
2) build encoding tree
3) build encoding map
4) encode data
5) decode data
C) compress file
D) decompress file
F) free tree memory
B) binary file viewer
T) text file viewer
S) side-by-side file comparison
Q) quit

Your choice? c
Input file name: large.txt
Output file name (Enter for large.huf):
Reading 9768 uncompressed bytes.
Compressing ...
Wrote 5921 compressed bytes.

example output from provided HuffmanMain client

 2

Character ASCII value ASCII (binary) Huffman (binary)

' ' 32 00100000 10
'a' 97 01100001 0001
'b' 98 01100010 0111010
'c' 99 01100011 001100
'e' 101 01100101 1100
'z' 122 01111010 00100011010

The steps involved in Huffman encoding a given text source file into a destination
compressed file are:

• count frequencies: Examine a source file's contents and count the number of
occurrences of each character.

• build encoding tree: Build a binary tree with a particular structure, where each leaf
node stores a character and its frequency count. A priority queue is used to help
build the tree along the way.

• build encoding map: Traverse the binary tree to discover the binary encodings of
each character.

• encode data: Re-examine the source file's contents, and for each character, output
the encoded binary version of that character to the destination file.

Encoding a File, Step 1: Counting Frequencies
For example, suppose we have a file example.txt whose contents are: ab ab cab
In the original file, this text occupies 10 bytes, or 80 bits, of data. The 10th is a special
"end-of-file" (EOF) byte.

byte 1 2 3 4 5 6 7 8 9 10
char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' EOF
ASCII 97 98 32 97 98 32 99 97 98 256
binary 01100001 01100010 00100000 01100001 01100010 00100000 01100011 01100001 01100010 N/A

In Step 1 of Huffman's algorithm, a count for each character is computed. The counts are
represented as a map:

{' ':2, 'a':3, 'b':3, 'c':1, EOF:1}

Encoding a File, Step 2: Building an Encoding Tree

Step 2 of Huffman's algorithm places our counts into binary tree nodes, with each node
storing a character and a count of its occurrences. The nodes are then put into a priority
queue, which keeps them in prioritized order with smaller counts having higher priority, so
that characters with lower counts will come out of the queue sooner. The priority queue is

 3

somewhat arbitrary in how it breaks ties, such as 'c' being before EOF and 'a' being
before 'b'.

front back
+-----+ +-----+ +-----+ +-----+ +-----+
| 'c' | | EOF | | ' ' | | 'a' | | 'b' |
| 1 | | 1 | | 2 | | 3 | | 3 |
+-----+ +-----+ +-----+ +-----+ +-----+

Now the algorithm repeatedly removes the two nodes from the front of the queue—the two
with the smallest frequencies—and marries them into a new node whose frequency is their
sum. The two nodes are wired in as children of the new node; the first removed becomes
the left child, and the second becomes the right. The new node is re-inserted into the
queue in sorted order. This process is repeated until the queue contains only one binary
tree node with all the others as its children. This will be the root of our final Huffman
tree. The following diagram shows this process:

1) 'c' node and EOF node are removed and joined 2) ' ' node and c/EOF node are removed and joined
+-----+ +-----+ +-----+ +-----+
| ' ' | | | | 'a' | | 'b' |
| 2 | | 2 | | 3 | | 3 |
+-----+ +-----+ +-----+ +-----+
 / \
 / \
 +-----+ +-----+
 | 'c' | | EOF |
 | 1 | | 1 |
 +-----+ +-----+

+-----+ +-----+ +-----+
| 'a' | | 'b' | | |
| 3 | | 3 | | 4 |
+-----+ +-----+ +-----+
 / \
 / \
 +-----+ +-----+
 | ' ' | | |
 | 2 | | 2 |
 +-----+ +-----+
 / \
 / \
 +-----+ +-----+
 | 'c' | | EOF |
 | 1 | | 1 |
 +-----+ +-----+

3) 'a' and 'b' nodes are removed and joined 4) ' '/c/EOF node and a/b node are removed/joined
 +-----+ +-----+
 | | | |
 | 4 | | 6 |
 +-----+ +-----+
 / \ / \
 / \ / \
+-----+ +-----+ +-----+ +-----+
| ' ' | | | | 'a' | | 'b' |
| 2 | | 2 | | 3 | | 3 |
+-----+ +-----+ +-----+ +-----+
 / \
 / \
 +-----+ +-----+
 | 'c' | | EOF |
 | 1 | | 1 |
 +-----+ +-----+

 +-----+
 | |
 | 10 |
 +-----+
 / \
 / \
 +-----+ +-----+
 | | | |
 | 4 | | 6 |
 +-----+ +-----+
 / \ / \
 / \ / \
+-----+ +-----+ +-----+ +-----+
| ' ' | | | | 'a' | | 'b' |
| 2 | | 2 | | 3 | | 3 |
+-----+ +-----+ +-----+ +-----+
 / \
 / \
 +-----+ +-----+
 | 'c' | | EOF |
 | 1 | | 1 |
 +-----+ +-----+

 4

Encoding a File, Step 3: Building an Encoding Map
The Huffman code for each character is derived from your
binary tree by thinking of each left branch as a bit value of 0
and each right branch as a bit value of 1, as shown in the
diagram at right. The code for each character can be
determined by traversing the tree. To reach ' ', we go left
twice from the root, so the code for ' ' is 00. The code for
'c' is 010, the code for EOF is 011, the code for 'a' is 10
and the code for 'b' is 11. By traversing the tree, we can
produce a map from characters to their binary representations.

Though the binary representations are integers, since they
consist of binary digits and can be arbitrary length, we will
store them as strings. For this tree, it would be:

{' ':"00", 'a':"10", 'b':"11", 'c':"010", EOF:"011"}

Encoding a File, Step 4: Encoding the Text Data:

Using the encoding map, we can encode the file's text into a shorter binary representation.
Using the preceding encoding map, the text ab ab cab would be encoded as:

1011001011000101011011

The following table details the char-to-binary mapping in more detail. The overall
encoded contents of the file require 22 bits, or almost 3 bytes, compared to the original file
of 10 bytes.

char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' EOF

binary 10 11 00 10 11 00 010 10 11 011

Since the character encodings have different lengths, often the length of a Huffman-
encoded file does not come out to an exact multiple of 8 bits. Files are stored as sequences
of whole bytes, so in cases like this the remaining digits of the last byte are filled with
zeroes. You do not need to worry about this; it is managed for you as part of the
underlying file system.

byte 1 2 3

char a b a b c a b EOF

binary 10 11 00 10 11 00 010 1 0 11 011 00

 +-----+
 | |
 | 10 |
 +-----+
 / \
 0 / \ 1
 +-----+ +-----+
 | | | |
 | 4 | | 6 |
 +-----+ +-----+
 / \ / \
 0 / \ 1 0 / \ 1
+-----+ +-----+ +-----+ +-----+
| ' ' | | | | 'a' | | 'b' |
| 2 | | 2 | | 3 | | 3 |
+-----+ +-----+ +-----+ +-----+
 / \
 0 / \ 1
 +-----+ +-----+
 | 'c' | | EOF |
 | 1 | | 1 |
 +-----+ +-----+

 5

It might worry you that the characters are stored without any delimiters between them,
since their encodings can be different lengths and characters can cross byte boundaries, as
with 'a' at the end of the second byte. But this will not cause problems in decoding the
file, because Huffman encodings by definition have a useful prefix property where no
character's encoding can be the prefix of another's.

Decoding a File

You can use a Huffman tree to decode text that was previously encoded with its binary
patterns. The decoding algorithm is to read each bit from the file, one at a time, and use
this bit to traverse the Huffman tree. If the bit is a 0, you move left in the tree. If the bit is
1, you move right. You do this until you hit a leaf node. Leaf nodes represent characters,
so once you reach a leaf, you output that character. For example, suppose we are given
the same encoding tree above, and we are asked to decode a second file containing the
following bits:

1110010001001010011

Using the Huffman tree, we walk from the root until we find characters, then output them and go
back to the root.

• We read a 1 (right), then a 1 (right). We reach 'b' and output b. Back to root. 1110010001001010011

• We read a 1 (right), then a 0 (left). We reach 'a' and output a. (Back to root.) 1110010001001010011
• We read a 0 (left), then a 1 (right), then a 0 (left). We reach 'c' and output c. 1110010001001010011

• We read a 0 (left), then a 0 (left). We reach ' ' and output a space. 1110010001001010011
• We read a 1 (right), then a 0 (left). We reach 'a' and output a. 1110010001001010011

• We read a 0 (left), then a 1 (right), then a 0 (left). We reach 'c' and output c. 1110010001001010011
• We read a 1 (right), then a 0 (left). We reach 'a' and output a. 1110010001001010011

• We read a 0, 1, 1. This is our EOF encoding pattern, so we stop. The overall decoded text is bac aca.

Provided Code
We provide you with a file HuffmanNode.h that declares some useful support code,
including the HuffmanNode structure, which represents a node in a Huffman encoding
tree.

struct HuffmanNode {
 int character; // character being represented by this node
 int count; // number of occurrences of that character
 HuffmanNode* zero; // 0 (left) subtree (NULL if empty)
 HuffmanNode* one; // 1 (right) subtree (NULL if empty)
 ...
};

The character field is declared as type int, but you should think of it as a char. (Types
char and int are largely interchangeable in C++, but using int here allows us to

 6

sometimes use character to store values outside the normal range of char, for use as
special flags.) The character field can take one of three types of values:

• an actual char value;
• the constant PSEUDO_EOF (defined in bitstream.h in the Stanford library),

which represents the pseudo-EOF value that you will need to place at the end of an
encoded stream; or

• the constant NOT_A_CHAR (defined in bitstream.h in the Stanford library),
which represents something that isn't actually a character. This can be stored in
interior nodes of the Huffman encoding tree, because such nodes do not represent
any one individual character.

Bit Input/Output Streams

In parts of this program you will need to read and write bits to files. In the past we have
wanted to read input an entire line or word at a time, but for this program, it’s much better
to read one single character (byte) at a time. You should use the following in/output stream
functions:

ostream (output stream)
member

Description

void put(int byte) writes a single byte (character, 8 bits) to the output stream

istream (input stream) member Description

int get() reads a single byte (character, 8 bits) from input (or EOF)

You might also find that you want to read an input stream, then "rewind" it back to the start
and read it again. To do this on an input stream variable named input, you can use the
rewindStream function from filelib.h:

rewindStream(input); // tells the stream to seek back to the beginning

To read or write a compressed file, even a whole byte is too much! You will want to read
and write binary data one single bit at a time, which is not directly supported by the default
in/output streams. Fortunately, the Stanford C++ library provides obitstream and
ibitstream classes with writeBit and readBit members to make it easier.

 7

obitstream (bit output stream)

member
Description

void writeBit(int bit) writes a single bit (0 or 1) to the output stream

ibitstream (bit input stream)
member

Description

int readBit() reads a single bit (0 or 1) from input; -1 at end of file

When reading from an bit input stream (ibitstream), you can detect the end of the file
by either looking for a readBit result of -1, or by calling the fail member function on
the input stream after trying to read from it, which will return true if the last readBit call
was unsuccessful because the end of the file had previously been reached.

Note that the bit in/output streams also provide the same members as the original
ostream and istream classes from the C++ standard library, such as getline, <<, >>,
etc. But you won’t want to use them, because they operate on an entire byte at a time, or
more, whereas you want to process these streams one bit at a time.

Implementation Details
In this assignment you will write the following functions in the file encoding.cpp to
encode and decode data using the Huffman algorithm described previously. Our provided
main client program will allow you to test each function one at a time before moving on to
the next. You must write the following functions, although you can add more functions as
helpers if you like. You will find yourself traversing a binary tree from top to bottom for a
few of these methods. You can do the traversal recursively or iteratively, whichever
approach seems cleaner to you.

Map<int, int> buildFrequencyTable(istream& input)

This is Step 1 of the encoding process. In this function you read input from a given istream
(which could be a file on disk, a string buffer, etc.). You should count and return a mapping from
each character (represented as int here) to the number of times that character appears in the
file. You should also add a single occurrence of the fake character PSEUDO_EOF into your
map. You may assume that the input file exists and can be read, though the file might be
empty. An empty file would cause you to return a map containing only the 1 occurrence of
PSEUDO_EOF.

HuffmanNode *buildEncodingTree(const Map<int, int>& freqTable)

This is Step 2 of the encoding process. In this function you will accept a frequency table (like the
one you built in buildFrequencyTable) and use it to create a Huffman encoding tree based on
those frequencies. Return a pointer to the node representing the root of the tree.

 8

You may assume that the frequency table is valid: that it does not contain any keys other than char
values and PSEUDO_EOF. All counts are positive integers; it contains at least one key/value pairing;
etc.

When building the encoding tree, you will need to use a priority queue to keep track of which
nodes to process next. Use the PriorityQueue collection provided by the Stanford libraries,
defined in library header pqueue.h. This priority queue allows each element to be enqueued
along with an associated priority. The priority queue then sorts elements by their priority, with the
dequeue function always returning the element with the minimum priority number. Consult the
docs on the course website and lecture slides for more information about priority queues. Note that
this is not exactly the pqueue.h file you worked with for Assignment 5. This is the one that comes
with the Stanford libraries.

Map<int, string> buildEncodingMap(HuffmanNode *encodingTree)

This is Step 3 of the encoding process. In this function you will accept a pointer to the root node of
a Huffman tree (like the one you built in buildEncodingTree) and use it to create and return a
Huffman encoding map based on the tree's structure. Each key in the map is a character, and each
value is the binary encoding for that character represented as a string. For example, if the
character 'a' has binary value 10 and 'b' has 11, the map should store the key/value pairs
'a':"10" and 'b':"11". If the encoding tree is NULL, return an empty map.

void encodeData(istream& input, const Map<int, string>& encodingMap,
 obitstream& output)

This is Step 4 of the encoding process. In this function you will read one character at a time from a
given input file, and use the provided encoding map to encode each character to binary, then write
the character's encoded binary bits to the given bit output bit stream. After writing the file's
contents, you should write a single occurrence of the binary encoding for PSEUDO_EOF into the
output so that you'll be able to identify the end of the data when decompressing the file later. You
may assume that the parameters are valid: that the encoding map is valid and contains all needed
data, that the input stream is readable, and that the output stream is writable. The streams are
already opened and ready to be read/written. You do not need to prompt the user or open/close
the files yourself.

void decodeData(ibitstream& input, HuffmanNode *encodingTree,
 ostream& output)

This is the decoding-a-file process described previously. In this function you should do the
opposite of encodeData. You read bits from the given input file one at a time, and walk through
the specified decoding tree to write the original uncompressed contents of that file to the given
output stream. The streams are already opened and you do not need to prompt the user or
open/close the files yourself.

To manually verify that your implementations of encodeData and decodeData are working
correctly, use our provided test code to compress strings of your choice into a sequence of 0s and
1s. The next page describes a header that you will add to compressed files, but in encodeData and
decodeData, you should not write or read this header from the file. Instead, just use the encoding
tree you're given. Worry about headers only in compress/decompress.

 9

The functions described above implement Huffman's algorithm, but they have one big flaw. The
decoding function requires the encoding tree to be passed in as a parameter. Without the encoding
tree, you don't know the mappings from bit patterns to characters, so you can't successfully decode
the file.

We will work around this by writing the encodings into the compressed file, as a
header. The idea is that when opening our compressed file later, the first several bytes will
store our encoding information, and then those bytes are immediately followed by the
compressed binary bits that we compressed earlier. It's actually easier to store the
character frequency table, the map from Step 1 of the encoding process, and we can
generate the encoding tree from that. For our ab ab cab example, the frequency table
stores the following (the keys are shown by their ASCII integer values, such as 32 for ' '
and 97 for 'a', because that is the way the map would look if you printed it out):

{32:2, 97:3, 98:3, 99:1, 256:1}

We don't have to write the encoding header bit-by-bit; just write out normal ASCII characters for
our encodings. We could come up with various ways to format the encoding text, but this would
require us to carefully write code to write/read the encoding text. There's a simpler way. You
already have a Map of character frequency counts from Step 1 of encoding. In C++, collections
like Maps can easily be read and written to/from streams using << and >> operators. So all you
need to do for your header is write your map into the bit output stream first before you start writing
bits into the compressed file, and read that same map back in first later when you decompress
it. The overall file is now 34 bytes: 31 for the header and 3 for the binary compressed data. Here's
an attempt at a diagram:

byte 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

'{' '3' '2' ':' '2' ',' ' ' '9' '7' ':' '3' ',' ' ' '9' '8' ':' '3'
byte 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

',' ' ' '9' '9' ':' '1' ',' ' ' '2' '5' '6' ':' '1' '}' * * *
 _____/ ___/ /
// output << frequencyTable; input >> frequencyTable; / / /
// output.writeBit(...); input.readBit(); ... 10110010 11000101 01101100

Looking at this new rendition of the compressed file, you may be thinking, "The file is not
compressed at all; it actually got larger than it was before! It went up from 9 bytes (ab ab
cab) to 34! That's true for this contrived example. But for a larger file, the cost of the
header is not so bad relative to the overall file size. There are more compact ways of
storing the header, too, but they add too much challenge to this assignment, which is
meant to practice trees and data structures and problem solving more than it is meant to
produce a truly tight compression.

The last step is to glue all of your code together, along with code to read and write the
encoding table to the file:

 10

void compress(istream& input, obitstream& output)

This is the overall compression function. In this function you should compress the given input file into
the given output file. You will take as parameters an input file that should be encoded and an output
bit stream to which the compressed bits of that input file should be written. You should read the input
file one character at a time, building an encoding of its contents, and write a compressed version of
that input file, including a header, to the specified output file. This function should be built on top of
the other encoding functions and should call them as needed. You may assume that the streams are
both valid and read/writeable, but the input file might be empty. The streams are already opened and
ready to be read/written. You do not need to prompt the user or open/close the files yourself.

void decompress(ibitstream& input, ostream& output)

This function should do the opposite of compress. It should read the bits from the given input file one
at a time, including your header packed inside the start of the file, to write the original contents of that
file to the file specified by the output parameter. You may assume that the streams are valid and
read/writeable, but the input file might be empty. The streams are already open and ready to be used;
you do not need to prompt the user or open/close files.

void freeTree(HuffmanNode* node)

This function should free the memory associated with the tree whose root node is represented by the
given pointer. You must free the root node and all nodes in its sub-trees. There should be no effect if
the tree passed is NULL. If your compress or decompress function creates a Huffman tree, that
function should also free the tree.

Development Strategy and Hints
• When writing the bit patterns to the compressed file, note that you do not write the

ASCII characters '0' and '1' (that wouldn't do much for compression!), instead
the bits in the compressed form are written one-by-one using the readBit and
writeBit member functions on the bitstream objects. Similarly, when you are
trying to read bits from a compressed file, don't use >> or byte-based methods like
get or getline; use readBit. The bits that are returned from readBit will be
either 0 or 1, but not '0' or '1'.

• Work step-by-step. Get each part of the encoding program working before starting
on the next one. You can test each function individually using our provided client
program, even if others are blank or incomplete.

• Start out with small test files (two characters, ten characters, one sentence) to
practice on before you start trying to compress large books of text. What sort of files
do you expect Huffman to be particularly effective at compressing? On what sort of
files will it be less effective? Are there files that grow instead of shrink when
Huffman encoded? Consider creating sample files to test out your theories.

• Your implementation should be robust enough to compress any kind of file: text,
image, video, or even one it has previously compressed. Your program probably
won't be able to further squish an already compressed file (and in fact, it can get

 11

larger because of header overhead) but it should be possible to compress multiple
iterations, decompress the same number of iterations, and return to the original file.

• Your program only has to decompress valid files compressed by your program. You
do not need to take special precautions to protect against user error such as trying to
decompress a file that isn't in the proper compressed format.

• See the input/output streams section for how to rewind a stream to the beginning if
necessary.

• The operations that read and write bits are somewhat inefficient and working on a
large file (100K and more) will take some time. Don't be concerned if the
reading/writing phase is slow for very large files.

• Note that Qt Creator puts the compressed binary files created by your code in your
"build" folder. They won't show up in the normal res resource folder of your
project.

Extras
There are all sorts of fun extras you can layer on top of this assignment. Here are a few
things to consider (though everything is optional):

• Make the encoding table more efficient: Our implementation of the encoding table
at the start of each file is not at all efficient, and for small files can take up a lot of
space. Try to see if you can find a better way of encoding the data. If you're feeling
up for a challenge, try looking up succinct data structures and see if you can write
out the encoding tree using one bit per node and one byte per character!

• Add support for encryption in addition to encoding: Without knowledge of the
encoding table, it's impossible to decode compressed files. Update the encoding
table code so that it prompts for a password or uses some other technique to make it
hard for Bad People to decompress the data. (There’s legit extra credit opportunity
here.)

• Implement a more advanced compression algorithm: Huffman encoding is a good
compression algorithm, but there are much better alternatives in many cases. Try
researching and implementing a more advanced algorithm, like LZW, in addition to
Huffman coding. (More legitimate extra credit opportunity here as well.)

• Gracefully handle bad input files: The normal version of the program doesn't work
very well if you feed it bogus input, such as a file that wasn't created by your own
algorithm. Make your code more robust by making it able to detect whether a file is
valid or invalid and react accordingly. One possible way of doing this would be to
insert special bits/bytes near the start of the file that indicate a header flag or check-
sum. You can test to see whether these bit patterns are present, and if not, you
know the file is bogus.

• Anything else: If you have your own creative idea for an extra feature, ask your SL
and/or the instructor about it.

 12

Indicating that you have done extra features: If you complete any extra features, then in
the comment heading on the top of your program, please list all extras that you worked on
and where in the code they can be found (what functions, lines, etc. so that the grader can
look at their code easily).

Submitting a program with extra features: Since we use automated testing for part of our
grading process, it is important that you submit a program that conforms to the preceding
spec, even if you want to add extra features. If your extras cause your program to change
the output that it produces in such a way that it no longer matches the expected sample
output test cases provided, you should submit your program twice: a first time without any
extra features added (or with all necessary extras disabled or commented out), and a
second time with the extras enabled. Please distinguish them by explaining which is which
in the comment header. Our submission system saves every submission you make, so if
you make multiple submissions, we will be able to view all of them; your previously
submitted files will not be lost or overwritten.

