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Assignment 5: Priority Queue 
Assignment idea, handout introduction, and binary heap specifications come from by Julie Zelenski.  

Everything else, including the binomial heap implementation and rest of the handout, comes from Jerry. 
 
It's finally time for you to implement a class of your own.  That class is a priority queue, and 
it’s a variation on the standard queue described in lecture and in the course textbook.   
 
The standard queue is a collection of elements managed in a first-in, first-out manner. The 
first element added to the collection is always the first element extracted; the second is 
second; so on and so on.  In some cases, however, a FIFO strategy may be too simplistic 
for the problem being solved.  A hospital emergency room, for example, needs to schedule 
patients according to priority. A patient who arrives with a more serious problem should 
pre-empt others even if they have been waiting longer.  This is a priority queue, where 
elements are added to the queue in arbitrary order, but when time comes to extract the 
next element, it is the highest priority element in the queue that is removed. 
 
The main focus of this assignment is to implement a priority queue class in several different 
ways.  You'll have a chance to experiment with arrays and linked structures, and in doing 
so you’ll master the pointer gymnastics that go along with it.  
 

Monday, November 4th at 11:59pm 

The PQueue Interface 

The priority queue will be a collection of strings.  Lexicographically smaller strings should 
be considered higher priority than lexicographically larger ones, so that "ping" is higher 
priority than "pong", regardless of insertion order. 
 
Here are the methods that make up the public interface of all priority queues: 

 
class PQueue { 
public: 
 void enqueue(const std::string& elem); 
 std::string extractMin(); 
 const std::string& peek(); 
 static PQueue *merge(PQueue *one, PQueue *two); 
private: 
 // implementation dependent member variables and helper methods 
}; 
 

enqueue is used to insert a new element to the priority queue.  extractMin returns the 
value of highest priority (i.e., lexicographically smallest) element in the queue and removes 
it.  merge destructively unifies the supplied queues and returns their union as a new 
priority queue.  For detailed descriptions of how these methods behave, see the pqueue.h 
interface file included in the starter files. 
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Implementing the priority queue 

While the external representation may give the illusion that we store everything in sorted 
order behind the scenes at all time, the truth is that we have a good amount of flexibility on 
what we choose as the internal representation.  Sure, all of the operations need to work 
properly, and we want them to be fast.  But we might optimize not for speed but for ease of 
implementation, or to minimize memory footprint.  Maybe we optimize for one operation 
at the expense of others. 
 
This assignment is all about client expectations, implementation and internal 
representation.  You’ll master arrays and linked lists in the process, but the takeaway point 
of the assignment—or the most important of the many takeaway points—is that you can 
use whatever machinery you deem appropriate to manage the internals of an abstraction. 
 
You’ll implement the priority queue in four different ways.  Two are straightforward, but 
the third is nontrivial, and the fourth is very challenging (although so neat and clever and 
beautiful that it’s worth the struggle). 
 

Implementation 1: Optimized for simplicity and for the enqueue method by backing 
your priority queue by an unsorted Vector<string>. merge is 
pretty straightforward, and peek and extractMin are 
expensive, but the expense might be worth it in cases where you 
need to get a version up and running really quickly for a 
prototype, or a proof of concept, or perhaps because you need to 
enqueue 50,000 elements and extract a mere 5.  I don’t provide 
much in terms of details on this one, as it’s pretty simple. 

Implementation 2: Balance insertion and extraction times by implementing your 
priority queue in terms of a binary heap, discussed in detail 
below.  When properly implemented, peek runs in O(1) time, 
enqueue and extractMin each run in O(lg n) time, and 
merge runs in O(n) time. 

Implementation 3: Optimized for simplicity and for the extractMin operation 
by maintaining a sorted doubly linked (next and prev 
pointers required) list of strings behind the scenes.  peek and 
extractMin will run super fast, but enqueue will be slow, 
because it needs to walk the list from front to back to find the 
insertion point (and that takes time that’s linear in the size of 
the priority queue itself).  merge can (and should) be 
implemented to run in linear time, for much the same reason 
Merge from merge sort can be. 

Implementation 4: enqueue, extractMin, and merge all run in O(lg n), but 
only because we use a collection of binomial heaps behind the 
scenes. Binomial heaps are by far the most intense of the four 
data structures used in Assignment 5, so leave plenty of time 
ahead of the deadline to work on it. 
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Implementation 1: Unsorted Vector 

This implementation is layered on top of our Vector class. enqueue simply appends the 
new element to the end.  When it comes time to extract the highest priority element, it 
performs a linear search to find it.  The implementation is straightforward as far as layered 
abstractions go and serves more as an introduction to the assignment architecture than it 
does as an interesting implementation.  Do this one first. 
 

Aside 

As you implement each of the subclasses, you’ll leave pqueue.h and pqueue.cpp 
alone, and instead be modifying the interface (.h) and implementation (.cpp) files for 
each of the subclasses.  In the case of the unsorted vector version, you’ll be concerned 
with pqueue-vector.h and pqueue-vector.cpp.  pqueue-vector.h defines 
the public interface you’re implementing, but its private section is empty: 
 

class VectorPQueue : public PQueue { 
public: 
 VectorPQueue(); 
 ~VectorPQueue(); 
  
 static VectorPQueue *merge(VectorPQueue *one, VectorPQueue *two); 
  
 void enqueue(const std::string& elem); 
 std::string extractMin(); 
 const std::string& peek(); 
  
private: 
 // update the private section with the list of  
 // data members and helper methods needed to implement 
 // the vector-backed version of the PQueue. 
}; 

 
Not surprisingly, the private section shouldn’t be empty, but instead should list the 
items that comprise your internal representation.  You should erase the provided 
comment and insert the collection of data members and private helper functions you 
need. 
 
The pqueue-vector.cpp file provides dummy, placeholder implementations of 
everything, just so the project cleanly compiles.  In a few cases, the dummy 
implementations sort of do the right thing, but a large majority of them need updates to 
include real code that does real stuff. 
 
Important: the parent PQueue class defines a protected field called logSize, 
which means you have access to it.  You should ensure that logSize is always 
maintained to house the logical size of the priority queue—both here and in the other 
three implementations.  By unifying the logSize field to the parent class, we can 
implement size and isEmpty at the PQueue class level (I already did for you), and 
all subclasses just inherit it. 
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As you advance through the implementations, understand that you’ll be modifying 
different pairs of interface and implementation files (pqueue-heap.h and pqueue-
heap.cpp for the binary heap version, etc).  In all cases, the private sections of the 
interface are empty and need to be fleshed out, and in all cases the implementation files 
have placeholder implementations to seduce the compiler into thinking everything is 
good. 

 
Implementation 2: Binary Heap 

Although the binary search trees we’ll eventually discuss might make a good 
implementation of a priority queue, there is another type of binary tree that is an even 
better choice in this case.   
 
A heap is a binary tree that has these two properties: 
 

• It is a complete binary tree, i.e. one that is full in all levels (all nodes have two 
children), except for possibly the bottommost level, which is filled in from left to 
right with no gaps. 

• The value of each node is less than or equal to the value of its children. 
 
Here's a conceptual picture of a small heap of  
integer strings (i.e. strings where all characters 
are digits): 
 

 
 
 
 
 
 
 
Note that a heap differs from a binary search tree in two significant ways.  First, while a 
binary search tree keeps all the nodes in a sorted arrangement, a heap is ordered more 
loosely.  Conveniently, the manner in which a heap is ordered is enough for the efficient 
performance of the standard priority queue operations.  The second important difference is 
that while binary search trees come in many different shapes, a heap must be a complete 
binary tree, which means that every binary heap containing ten elements is the same shape 
as every other binary heap with ten elements. 
 
Representing a heap using an array 

One way to manage a heap would be to use a standard binary tree node definition and 
wire up left and right child pointers to sub-trees.  However, we can and will exploit 
the completeness of the binary heap’s tree and create a simple array representation and 
avoid the pointers.   
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Consider the nodes in the heap to be numbered level by level like this: 
 
 

 
 

 
 
 
 
 
 
 
 
and check out this array representation of the same heap: 
 

15 29 20 30 44 46 33 30 47 45 
1 2 3 4 5 6 7 8 9 10 

 
You can divide any node number by 2 (discarding the remainder) to get the node number 
of its parent (e.g., the parent of 9 is 4).  The two children of node i are 2i and 2i + 1, e.g. 
node 3's two children are 6 and 7.  Although many of the drawings in this handout use a 
tree diagram for the heap, keep in mind you will actually be representing the binary heap 
with a dynamically allocated array, much like the Vector does. 
 

Heap insert 

A new element is added to the very bottom of the heap and it rises up to its proper 
place.  Suppose, for example, we want to insert a "25".  We add a new node at the 
bottom of the heap (the insertion position is equal to the size of the heap), as with: 
 

 
 
 
 

 
 
 
 
 
 
 

15 29 20 30 44 46 33 30 47 45 25 
1 2 3 4 5 6 7 8 9 10 11 
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We compare the value in this new node with the value of its parent and, if necessary, 
exchange them. Since our heap is actually laid out in an array, we "exchange" the 
nodes by swapping array values.  From there, we compare the ascended value to its 
new parent and continue moving the value up until it need go no further. 
 

 
 
 
 
 
 
 
 
 
 

  
 
 

Heap remove 

The binary heap property guarantees that the smallest value resides at the root, where it 
can be easily accessed.  After removing this value, you typically need to rearrange those 
that remain.  The completeness property dictates the shape of the heap, so it’s the 
bottommost node that needs to be removed.  Rather than re-arranging everything to fill 
in the gap left at the root, we leave the root node where it is, copy the value from the 
last node to the root, and remove the last node. 

 
 
 
 
 
 
 
 

 
 
 

We still have a complete tree with one less value, and the left and right sub-trees are 
still legit binary heaps.  The only potential problem: a violation of the heap ordering 
property, localized at the root.  In order to restore the min-heap property, we need to 
trickle that value down to the right place.  Start by comparing the value in the root to 
the values of its two children.  If the root's value is larger than the values of either child, 
swap the value in the root with that of the smaller one: 
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This step fixes the heap ordering property for the root node, but at the expense of the 
impacted sub-tree.  The sub-tree is now another heap where its root node is out of 
order, so we can iteratively apply the same reordering on the sub-tree to fix it and any 
other impacted sub-trees.  

 
 

 
 
 
 
 
 

 
 
 
 
You stop trickling downwards when the value sinks to a level such that it is smaller than 
both of its children or it has no children at all.  This bubble-down algorithm is often 
referred to as heapify-ing. 
 
You should implement the priority queue as a binary heap array using the strategy 
outlined above.  This array should start small (initially allocated space for 4 strings) 
and grow as needed. 
 
Merging two heaps 

The merge operation—that is, destroying two heaps and creating a new one that’s the 
logical union of the two originals—can be accomplished via the same heapify 
operation discussed above.  Yes, you could just insert elements from the second into 
the first, one at a time, until the second is depleted and the first has everything.  But it’s 
actually faster—asymptotically so, in fact—to do the following: 
 

• Create an array that’s the logical concatenation of the first heap’s array and 
the second heap’s array, without regard for the heap ordering property.  The 
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result is a complete, array-backed binary tree that in all likelihood isn’t even 
close to being a binary heap. 

• Recognize that all of the leaf nodes—taken in isolation—respect the heap 
property. 

• Heapify all sub-heaps rooted at the parents of all the leaves. 
• Heapify all sub-heaps rooted at the grandparents of all the leaves. 
• Continue to heapify increasingly higher ancestors until you reach the root, 

and heapify that as well. 
 
Binary Heap Implementation Notes 

Manage your own raw memory.  It’s tempting to just use a Vector<string> to manage 
the array of elements.  But using a Vector introduces an extra layer of code in between 
your HeapPQueue and the memory that actually store the elements, and in practice, a 
core container class like the HeapPQueue would be implemented without that extra layer.  
Make it a point to implement your HeapPQueue in terms of raw, dynamically allocation 
arrays of strings instead of a Vector<string>. 
 
Freeing memory. You are responsible for properly managing heap-allocated memory.  Your 
implementation should not orphan any memory during its operations and the destructor 
should free everything it needs to. 
 
Think before you code. The amount of code necessary to complete the implementation is 
not large, but you will find it requires a good amount of thought.  It’ll help to sketch things 
on paper and work through the boundary cases carefully before you write any code. 
 
Test thoroughly. I know we’ve already said this, but it never hurts to repeat it a few times.  
You don't want to be surprised when our grading process finds a bunch of lurking 
problems that you didn't discover because of inadequate testing.  The code you write has 
some complex interactions and it is essential that you take time to identify and test all the 
various cases.  I’ve provided you with a minimal test harness to ensure that the 
HeapPQueue works in simple scenarios, but it’s your job to play villain and try to break 
your implementation, knowing that you’re done when you can’t break it any longer. 
 
Implementation 3: Sorted doubly linked list 

The linked list implementation is a doubly linked list of values, where the values are kept in 
sorted order (i.e., smallest to largest) to facilitate finding and removing the smallest element 
quickly.  Insertion is a little more work, but it’s made easier because of the decision to 
maintain both prev and next pointers.  merge is conceptually simple, although the 
implementation can be tricky for those just learning pointers and linked lists for the first 
time.  This is the first linked structure you’ll be writing for us, and you should review the 
textbook’s implementation of the Queue and read over the All About Linked Lists handout 
beforehand. 
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Implementation 4: Binomial Heaps 

The binomial heap expands on the idea of a binary heap by maintaining a collection of 
binomial trees, each of which respect a property very similar to the heap order property 
discussed for Implementation #2. 
 
A binomial tree of order k (where k is a positive integer) is recursively defined: 
 

• A binomial tree of order 0 is a single node with no children. 
• A binomial tree of order k is a single node at the root with k children, indexed 0 

through k – 1.  The 0th child is a binomial tree of order 0, the 1st child is a binomial 
tree of order 1, …, the mth child is a binomial tree of order m, and the k – 1st child is 
a binomial tree of order k - 1. 

 
Some binomial trees:  

 

 

 

 

 

 

 

 

One property to note—and one that will certainly be exploited in the coming paragraphs, 
is that one can assemble a binomial tree of order k + 1 out of two order k trees by simply 
appending the root of the second to the end of the first root’s sequence of children.  A 
related property: each binomial tree of order k has a total of 2k nodes. 
A binomial heap of order k is a binomial tree of order k, where the heap property is 
recursively respected throughout—that is, the value in each node is lexicographically less 
than or equal to those held by its children.  In a world where binomial trees store just 
numeric strings, the binomial tree on the left is also a binomial heap, whereas the one on 
the right is not (because the "55" is lexicographically greater than the "49"): 
 
 
 
 
 
 
 
 
Now, if binary heaps can back priority queues, then so can binomial heaps.  But the 
number of elements held by a priority queue can’t be constrained to be some power of 2 
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all the time.  So priority queues, when backed by binomial heaps, are really backed by a 
Vector of them. 
 
If a priority queue needs to manage 11 elements, then it would hold on to three binomial 
heaps of orders 0, 1, and 3 to store the 20 + 21 + 23 = 1 + 2 + 8 = 11 elements.  The fact 
that the binary representation of 1110 is 10112 isn’t a coincidence.  The 1’s in 1011 
contribute 23, 21, and 20 to the overall number.  Those three exponents tell us what 
binomial heaps orders are needed to accommodate all 11 elements.  Neat! 
 

Binomial Heap Insert 

What happens when we introduce a new element into the mix?  More formally: What 
happens when you enqueue a new string into the Vector<node *>-backed priority 
queue?  Let’s see what happens when we enqueue a "20". 

 
The size of the priority queue goes from 11 to 12—or rather, from 10112 to 11002.  
We’ll understand how to add this new element, all the time maintaining the heap 
ordering property within each binomial tree, if we emulate binary addition as closely as 
possible.  That emulation begins by creating binomial tree of order 0 around the new 
element—a "20" in this example—and align it with the 0th order entry of the 
Vector<node *>. 

 
 
 
 
 

 
 
 
 
 
  
 
 
Now, when we add 1 and 1 in binary, we get 0, and carry a 1, right?  We do the same 
thing when merging two order-0 binomial heaps, order-0 plus order-0 equal NULL, 
carry the order-1.  One key difference: when you merge two order-0 heaps into the 
order-1 that gets carried, you need to make sure the heap property is respected by the 
merge.  Since the 15 is smaller than the 20, that means the 15 gets an order-0 as a 
child, and that 15 becomes the root of the order-1. 
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The carry now contributes to the merging at the order-1 level.  The carry (with the 15 
and the 20) and the original order-1 contribution (the one with the 13 and the 45) 
similarly merge to produce a NULL order-1 with an order-2 carry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Had there been an order-2 in the original figure, the cascade of merges would have 
continued.  But because there’s no order-2 binomial heap in the original, the order-2 
carry can assume that position in the collection and the cascade can end.  In our 
example, the original binomial heap collection would be transformed into: 
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Binomial Heap Merge 

The primary perk the binomial heap has over the more standard binary heap is that it, if 
properly implemented, supports merge much more quickly.  In fact, two binomial 
heaps as described above can be merged in O(lg n) time, where n is the size of the 
larger binomial heap.   
 
You can merge two heaps using an extension of the binary addition emulated while 
discussing enqueue.  As it turns out, enqueuing a single node is really the same as 
merging an arbitrarily large binomial heap with a binomial heap of size 1.  The generic 
merge problem is concerned with the unification of two binomial heaps of arbitrary 
sizes.  So, for the purposes of illustration, assuming we want to merge two binomial 
heaps of size 13 and 23, represented below: 
 
 
 
 

 
 
 
 
 
 
 
The triangles represent binomial trees respecting the heap ordering properties, and the 
subscripts represent their order.  The numbers within the triangles are the root values—the 
smallest in the tree, and the blanks represent NULL.  (We don’t have space for the more 
elaborate pictures used to illustrate enqueue, so I’m going with more skeletal pictures.) 
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To merge is to emulate binary arithmetic, understanding that the 0s and 1s of pure binary 
math have been upgraded to be NULLs and binomial tree root addresses.  The merge 
begins with any order-0 trees, and then ripples from low to high order—left to right in the 
diagram.  This particular merge (which pictorially merges the second into the first) can be 
animated play-by-play as: 
 

1. Merge the two order-0 trees to produce an order-1 (with 34 at the root) that 
carries. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

2. Merge the two order-1 trees to produce an order-2 tree carry, with 11 at the root. 
   
   
   
 

 
 
 
 
 
  
 
 
 
 
 
 

3. Merge the three (three!) order-2 trees!  Leave one of the three alone (we’ll leave 
the 11 in place, though it could have been any of the three) and merge the other 
two to produce an order-3 (with the smaller of 28 and 30 as the root). 

 11 
1 

 28 
2 

 16 
4 

 30 
2 

 12 
3 

 34 
1 

carry 

 28 
2 

 16 
4 

 30 
2 

 12 
3 

 11 
2 

carry 



  14  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

4. Merge the two order-3 trees to produce an order-4 tree carry, with 12 as the 
root: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Finally, merge the two order-4s to materialize an order-5 tree with the 12 at the 
root.  Because this is clearly the last merge, we’ll draw just one final picture. 

 
 
 
 
 

 
The above reflects the fact that the merged product should have 13 + 23 equals 3610 
equals 1001002 elements, and it indeed does: The order-2 tree houses 4 elements, 
and the order-5 houses 32. 
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Binomial Heap Peek and extractMin 

peek can be implemented as a simple for loop over all of the binomial heaps in 
the collection, and returning the smallest of all of the root elements it encounters 
(and it runs in O(lg n) time).  extractMin runs like peek does, except that it 
physically removes the smallest element before returning it.  Of course, the binomial 
heap that houses the smallest element must make sure all of its children are properly 
reincorporated into the data structure without being orphaned.  Each of those 
children can be merged into the remaining structure in much the same way a 
second binomial heap is, as illustrated above. 

 

Binomial Heap Implementation Notes 

Think before you code. We said the same thing about the binary heap, but it’s even more 
important here.  You can’t fake an understanding of binomial heaps and start typing, 
hoping it’ll all just work out.  You’ll only succeed if have a crystal clear picture of how 
enqueue, merge, and extractMin all work, and you write code that’s consistent with 
that understanding.  In particular, you absolutely must understand the general merge 
operation described above before you tackle any operations that update the binomial heap 
itself. 
 
Use a combination of built-ins and custom structures.  Each node in a binomial heap 
should be modeled using a data structure that looks something like this: 
 

 struct node { 
  string elem; 
  Vector<node *> children; 
 }; 

 
As opposed to the binary heap, the binomial heap is complicated enough that you’ll want 
to rely on sensibly chosen built-ins and layer on top of those.  You’re encouraged to use 
the above node type for your implementation, and only deviate from it if you have a 
compelling reason to do so. 
 
Freeing memory. You are responsible for freeing heap-allocated memory.  Your 
implementation should not orphan any memory during its operations and the destructor 
should free all of the internal memory for the object. 
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Accessing files 

We’ve assembled a Qt Creator project for you already, and that project encapsulates many 
interface (.h) and implementation (.cpp) files. 
 

pqueue-test.cpp Test harness to assist in development and testing. 
pqueue Interface and partial implementation of base 

PQueue class.  The primary purpose of the PQueue 
class is to define the interface that all concrete 
priority queue implementations should agree on. 

pqueue-vector Interface and implementation file housing the 
unsorted vector version of the priority queue. 

pqueue-heap Interface and implementation file housing the 
version of the priority queue that’s backed by the 
array-packed binary heap. 

pqueue-linked-list Interface and implementation file housing the sorted, 
doubly linked list version of the priority queue. 

pqueue-binomial-heap Interface and implementation file housing the 
version of the priority queue that’s backed by 
binomial heaps. 

 


