
CS106X Handout 24

Autumn 2019 October 24th, 2019

CS106X Midterm Examination

This is an open-book, open-note, closed-electronic-device exam. You have 90 minutes
to complete it.

Good luck!

Section Leader: _____________________

Last Name: _____________________

First Name: _____________________

SUNet ID: _____________________@stanford.edu

I accept the letter and spirit of the honor code.

 (signed) __

 Score Grader

1. Prefix to Postfix [10] ______ ______

2. Magic Numbers [10] ______ ______

3. Derivability [10] ______ ______

Total [30] ______ ______

 2

Summary of Relevant Data Types
class string {
 bool empty() const;
 int size() const;
 int find(char ch) const;
 int find(char ch, int start) const;
 string substr(int start) const;
 string substr(int start, int length) const;
 char& operator[](int index);
 const char& operator[](int index) const;
};

class Vector {
 bool isEmpty() const;
 int size() const;
 void add(const Type& elem); // operator+= used similarly
 void insert(int pos, const Type& elem);
 void remove(int pos);
 Type& operator[](int pos);
 const Type& operator[](int pos) const;
};

class Stack {
 bool isEmpty() const;
 void push(const Type& elem);
 Type pop();
};

class Map {
 bool isEmpty() const;
 int size() const;
 void put(const Key& key, const Value& value);
 bool containsKey(const Key& key) const;
 Value get(const Key& key) const;
 Value& operator[](const Key& key);
 const Value& operator[](const Key& key) const;
};

class Set {
 bool isEmpty() const;
 int size() const;
 void add(const Type& elem); // operator+= also adds elements
 bool contains(const Type& elem) const;
};

 3

Problem 1: Prefix to Postfix [10 points]

In lecture, we used a stack to evaluate postfix expressions of the form "45+9*73-24+**".
In the interest of simplicity, we constrained the operand domain to single digit integers so the
entire expression could be easily captured in a string.

For this problem, you’re to write a function that converts valid prefix expressions
(e.g. "*-2+46-+259") to the equivalent postfix expressions (e.g., "246+-25+9-*"). We’ll
again restrict our operand domain to single digit integers.

Your implementation must use a stack and conform to the following algorithm:

• Read the supplied prefix expression in reverse—that is, from back to front.
• Each time you encounter a digit character, push it to the stack.
• Each time you encounter a non-digit character, assume it’s a valid operator, pop two

items from the stack, and push the postfix equivalent of the relevant subexpression
onto the stack as a string item.

• Repeat until the entire prefix expression has been processed and return the equivalent
postfix expression as a string.

You should assume the supplied prefix expression is well-formed and that you needn’t do any
error checking whatsoever.

Use the rest of this page and the next to present your implementation:

static string prefixToPostfix(const string& prefix) {

 4

Problem 1: Prefix to Postfix [continued]

 5

Problem 2: Magic Numbers [10 points]

A pandigital number is a ten-digit number comprised of each of the ten digits in some order,
e.g. 4106357289 is a pandigital number. As far as pandigital numbers go, 4106357289 has
an interesting divisibility property. If we let a be the first digit, b be the second digit, c be the
third digit, d is the fourth digit, etc., then we observe the following:

 bcd = 106 is divisible by 2
 cde = 063 is divisible by 3
 def = 635 is divisible by 5
 efg = 357 is divisible by 7
 fgh = 572 is divisible by 11
 ghi = 728 is divisible by 13
 hij = 289 is divisible by 17

Numbers like this—where bcd is divisible by the smallest prime, cde is divisible by the
second smallest prime, etc.—are called primal. When a number is both primal and
pandigital, we say it’s a magic number.

Looping through all 10 digits numbers to see which ones are incidentally magic is entirely too
time consuming. However, it’s possible to recursively discover all magic numbers by
generating permutations of the string "0123456789" and relying on the
stringToInteger function to convert strings to numbers. While constructing magic
numbers, you can prune partial permutations when it’s clear they’re dead ends.

Use this and the next page for your implementation of generateMagicNumbers, which
recursively discovers all magic numbers as described above and implants them in the
numbers set. Your recursion must prune the search when it’s clear there’s no sense in
continuing.

// kPrimes is a constant such that kPrimes[0] is 2, kPrimes[1] is 3, etc
static const Vector<int> kPrimes({2, 3, 5, 7, 11, 13, 17});
static void generateMagicNumbers(Set<int>& numbers) {

 6

Problem 2: Magic Numbers [continued]

 7

Problem 3: Derivability [10 points]

For this problem, you’re to revisit the RSG problem from Assignment 2. Recall the simple
context-free grammar presented in the handout:

<start>
1
The <object> <verb> tonight.

<object>
3
waves
big yellow flowers
slugs

<verb>
3
sigh <adverb>
portend like <object>
die <adverb>

<adverb>
2
warily
grumpily

This particular grammar is capable of generating a small number of expansions, including
"The slugs die warily tonight." and "The big yellow flowers portend
like big yellow flowers tonight." Other grammars—excuse.g comes to
mind—are capable of generating an unbounded number of expansions.

For this problem, you’ll write a backtracking function called cbg, (short for
canBeGenerated) to decide whether a specific expansion can be generated from the
"<start>" symbol of a grammar. To illustrate, assume the grammar above has been
compiled into a Map<string, Vector<string>> called g, where each key is a
nonterminal (e.g. "<object>"), and each Vector<string> stores some key’s productions
(e.g. ["waves", "big yellow flowers", "slugs"]). We’d expect cbg to behave
like this:

cbg(g, "The slugs die warily tonight.") -> true
cbg(g, "The big yellow flowers portend like big yellow flowers tonight.") -> true
cbg(g, "The waves die like waves tonight.") -> false

Determining whether a particular expansion can be generated from "<start>" requires
backtracking, since the expansion being matched may share a prefix with two or more
productions at any point in the search. For instance, a variation on the above grammar might
include the following:

 8

<verb>
3
sigh like <object>
sigh <simile>
sigh like no other <object>

If you’re trying to generate "sigh like no other slug", it’s possible the first is capable
of generating it, or it’s possible that the first isn’t but the second is, etc.

Use the rest of this page and the next to implement the cbg function as described above.
Your function needs to return true or false, but it doesn’t need to return any information
about what series of productions are involved in an expansion. You should assume the
grammar is structured so that a properly implemented cbg won’t get trapped in some infinite
left recursion (e.g. "<term>" won’t expand to "<term>" or anything else that might
eventually begin with "<term>").

You should implement cbg using a wrapper function to introduce the requirement that all
expansions must be generated from "<start>".

static bool cbg(const Map<string, Vector<string>>& g, const string& expansion) {

 9

Problem 3: Derivability [continued]

