
CS106X Handout 03

Autumn 2019 September 23rd, 2019

Grids and Queen Safety
Handout written by Jerry Cain.

Today's larger example demonstrates the use of a grid—that is, a single declaration of a
Grid<bool>—to maintain information about a chessboard and queen placement. All
algorithmically relevant code is presented in this handout.

We want to use a two-dimensional Grid template to maintain information about all the
locations on a chessboard. Because our particular example deals with the presence or absence
of a queen, we only need to store true or false at each location: true means there’s a
queen, and false means there isn’t. Ultimately, we are going to be interested in looking at an
arbitrary position of the board to determine whether any queens placed elsewhere can attack.

The following function clearBoard takes a Grid<bool> by reference and initializes every
entry of the grid to be false. Note the use of a double-for loop to generate every pair of row
and col that corresponds to a legal coordinate.

Over the course of the course, skim Chapters 1 through 4 just enough
to know where to look when you need to teach yourself something
(strings, files) that you’ve already seen in other programming
languages. Once you’ve done that, read through Section 5.1 for
information on the Vector and Grid classes.

 2

static void clearBoard(Grid<bool>& board) {
 for (int row = 0; row < board.numRows(); row++) {
 for (int col = 0; col < board.numCols(); col++) {
 board[row][col] = false;
 drawSquare(row, col, "Blue"); // assume a square is drawn at (row, col)
 }
 }
}

Next, we want a function placeRandomQueens that places some number of queens on the
board at random locations. We enter the function with an idea of exactly how many queens
need to be placed, and then repeatedly generate random coordinates on the board and place
queens there. Note the care placeRandomQueens takes to assign at most one queen to each
location—otherwise, the if (!board[row][col]) wouldn't be necessary.

 3

static void placeRandomQueens(Grid<bool>& board, int numQueensToPlace) {
 int numQueensPlaced = 0;
 while (numQueensPlaced < numQueensToPlace) {
 int row = randomInteger(0, board.numRows() - 1);
 int col = randomInteger(0, board.numCols() - 1);
 if (!board[row][col]) {
 board[row][col] = true;
 markLocation("Q", row, col, "Black"); // assume a Q is drawn
 numQueensPlaced++;
 }
 }
}

If we are dealing with an 8 x 8 board, then a call to placeRandomQueens(board, 8) might
produce the following:

At this point, we want to determine which of the unoccupied squares can be attacked.
Pretending for the moment that some isSafe predicate function already exists, we can easily
label each of the empty locations as safe or not using the following code snippet:

 4

static void identifySafeLocations(Grid<bool>& board) {
 for (int row = 0; row < board.numRows(); row++) {
 for (int col = 0; col < board.numCols(); col++) {
 if (!board[row][col]) {
 if (isSafe(board, row, col)) {
 markLocation("S", row, col, "Green");
 } else {
 markLocation("X", row, col, "Red");
 }
 }
 }
 }
}

To determine whether or not a particular location is safe from attack, we need to search in all
eight major and semimajor compass directions to see if a queen is visible. At first glance, we
might be interested in functions like isSouthWestSafe, isSouthSafe,
isSouthEastSafe, etc. and then implement isSafe to return the conjunction of all of them.

/**
 * Predicate Function: isSafe
 * --------------------------
 * isSafe returns true if and only if no queen
 * can be seen in any of the eight directions stemming radially
 * outward from the specified row and column.
 */
static bool isSafe(Grid<bool>& board, int row, int col) {
 return (isSouthWestSafe(board, row, col) &&
 isSouthSafe(board, row, col) &&
 isSouthEastSafe(board, row, col) &&
 isWestSafe(board, row, col) &&
 isEastSafe(board, row, col) &&
 isNorthWestSafe(board, row, col) &&
 isNorthSafe(board, row, col) &&
 isNorthEastSafe(board, row, col));
}

However, doing so requires the implementation of eight distinct helper functions, all of which
are basically the same code block with a few trivial differences. Just compare two of them.

 5

/**
 * Function: isSouthWestSafe
 * -------------------------
 * isSouthWestSafe decides whether or not any danger can be seen
 * by looking from the specified (row, col) coordinate in the
 * southwest direction. Assuming the origin (0,0) coincides
 * with the upper left corner of the board, isSouthWestSafe must examine
 * the coordinates (row + 1, col - 1), (row + 2, col - 2), etc, in that
 * order, until either the edge of the board or a queen is encountered.
 */
static bool isSouthWestSafe(Grid<bool>& board, int row, int col) {
 row++;
 col--;
 while (board.inBounds(row, col) && !board[row][col]) {
 row++;
 col--;
 }

 return !board.inBounds(row, col);
}

/**
 * Function: isSouthSafe
 * ---------------------
 * isSouthSafe decides whether or not any danger can be seen
 * by looking from the specified (row, col) coordinate in the
 * southern direction. Assuming the origin (0,0) coincides
 * with the upper left corner of the board, isSouthSafe must examine
 * the coordinates (row + 1, col), (row + 2, col), etc, in that
 * order, until either the edge of the board or a queen is encountered.
 */
static bool isSouthSafe(Grid<bool>& board, int row, int col) {
 row++;
 while (board.inBounds(row, col) && !board[row][col]) {
 row++;
 }

 return !board.inBounds(row, col);
}

To illustrate, consider the call isSouthWestSafe(board, 0, 5), where the distribution of
true and false in the board array corresponds to the placement of queens in the graphic
presented below. Notice that the specified location is circled, and that each of the locations
positioned southwest of it are labeled by the order isSouthWestSafe would visit them. The
isSouthWestSafe function would examine all squares along that direction until it hits the
edge of the board, or until it references one with a queen. For this call, we expect the algorithm
to return true.

 6

However, a call to isSouthWestSafe(board, 1, 6) would return false, because the
(4, 3) location of the board is occupied by a queen. Check out the following graphic to see:

1

2

3

4

5

1

2

 7

My major problem with this implementation is that all eight directional checks currently have
their own function, but all are really doing the same thing. The only difference between each is
the manner in which we update the row and col variables to move in a particular direction:

 SouthWest: row is incremented, and col is decremented with each move
 South: row is incremented with each move, and col remains the same
 SouthEast: row and col are incremented with each move
 West: row remains the same, but col is decremented with each move
 East: row remains the same, but col is incremented with each move
 NorthWest: row and col are decremented with each move
 North: row is decremented with each move, and col remains the same
 NorthEast: row is decremented, and col gets incremented with each move

We should work to unify the implementations of all eight predicate functions into a single one.
That way we refine and debug all logic in a single place instead of many.

Check this out:

/**
 * Function: isDirectionSafe
 * -------------------------
 * isDirectionSafe decides whether or not any danger can be seen
 * by looking from the specified (row, col) coordinate in a particular
 * direction--specified by arguments four and five in the form of exactly
 * what values should be added to (row, col) to move in a specified
 * direction.
 *
 * Assuming the origin (0,0) overlays the upper left corner of
 * then board, isDirectionSafe must examine the coordinates
 * (row + drow, col + dcol), (row + 2 * drow, col + 2 * dcol), etc,
 * in that order, until either the edge of the board or a queen
 * is encountered.
 */
static bool isDirectionSafe(Grid<bool>& board, int row, int col,
 int drow, int dcol) {
 if (drow == 0 && dcol == 0) return true;
 row += drow;
 col += dcol;
 while (board.inBounds(row, col) && !board[row][col]) {
 row += drow;
 col += dcol;
 }

 return !board.inBounds(row, col);
}

Need to search northwest from index (6, 5)?

Call isDirectionSafe(board, 6, 5, -1, -1).
Need to search south from index (6, 5)?

Call isDirectionSafe(board, 6, 5, 1, 0).
Need to search east from the origin?

Call isDirectionSafe(board, 0, 0, 0, 1).

 8

This allows us to unify common functionality to a single helper function, not eight of them, and
it also makes the implementation of the isSafe function (the one that checks all eight
directions, not just one) more compact.

static bool isSafe(Grid<bool>& board, int row, int col) {
 for (int drow = -1; drow <= 1; drow++) {
 for (int dcol = -1; dcol <= 1; dcol++) {
 if (!isDirectionSafe(board, row, col, drow, dcol))
 return false;
 }
 }
 return true;
}

