
CS103X: Discrete Structures

Homework Assignment 6

Due March 7, 2008

Exercise 1 (10 points). How many simple directed (unweighted) graphs on the set of vertices {v1, v2, . . . , vn}
are there that have at most one edge between any pair of vertices? (That is, for two vertices a, b, only at
most one of the edges (a, b) and (b, a) is in the graph.) For this question vertices are distinct and isomorphic
graphs are not the same. Substantiate your answer.

Solution Between any two vertices va and vb, there are three possibilities: va and vb are not connected,
va → vb, vb → va. For a graph with n vertices, there are

(
n
2

)
ways to pair up vertices and this leads to a

total of 3(n
2) different directed graphs.

Exercise 2 (20 points). Given a connected graph G = (V,E), the distance dG(u, v) of two vertices u, v
in G is defined as the length of a shortest path between u and v. The diameter diam(G) of G is defined
as the greatest distance among all pairs of vertices in G. (That is, maxu,v∈V dG(u, v).) The eccentricity
ecc(v) of a vertex v of G is defined as maxu∈V dG(u, v). Finally, the radius rad(G) of G is defined as the
minimal eccentricity of a vertex in G, namely minv∈V ecc(v). Prove:

(a) rad(G) ≤ diam(G) ≤ 2rad(G).

(b) For every n ∈ N+, there are connected graphs G1 and G2 with diam(G1) = rad(G1) = n and
diam(G2) = 2rad(G2) = 2n.

Solution

(a) As rad(G) = minv∈V [maxu∈V dG(u, v)], so obviously rad(G) ≤ diam(G)
Now suppose that diam(G) goes from vertices d1 to d2, d1, d2 ∈ V . Recall that rad(G) = minv∈V ecc(v).
Let the chosen v for minimal eccentricity be v∗.
Note that diam(G) ≤ dG(v∗, d1) + dG(v∗, d2). Since diam(G) is the shortest path from d1 to d2,
any other path from d1 to d2 is either as long or longer. Also note that dG(v∗, d1) + dG(v∗, d2) ≤
rad(G) + rad(G) = 2rad(G) since rad(G) is the maximum distance of any other vertex from v∗ in G.
Hence,

rad(G) ≤ diam(G) ≤ 2rad(G)

(b) Consider a cycle with 2n or 2n + 1 vertices. This will always have diam(G1) = rad(G1) = n. For
diam(G2) = 2rad(G2) = 2n, consider a line graph with 2n + 1 vertices.

Exercise 3 (10 points). Let G be a graph in which all vertices have degree at least d. Prove that G
contains a path of length d.

Solution Let the longest path have length p. Consider the last vertex in the path. It has degree at least
d, therefore, they must all be in the path otherwise we can make a longer path by adding any of those.
Therefore, the longest path must include at least d + 1 vertices, meaning the longest path must be at least
length d, so a path of length d can be found by taking a subpath of the longest path.
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Exercise 4 (15 points). Given a graph G = (V,E), an edge e ∈ E is said to be a bridge if the graph
G′ = (V,E \ {e}) has more connected components than G. Prove that if all vertex degrees in a graph G
are even then G has no bridge.

Solution We may assume that G is connected, for otherwise the lemma could be applied to each com-
ponent separately. For contradiction, suppose that an edge {v1, v2} = e is a bridge of G. The graph
G′ = (V,E \ {e}) has exactly 2 components. Let G1 be the component containing v1. All vertices of G1

have an even degree except for v1 whose degree in G1 is odd. But this is impossible by the handshake
lemma.

Exercise 5 (10 points). Prove that given a connected graph G = (V,E), the degrees of all vertices of G
are even if and only if there is a set of edge-disjoint cycles in G that cover the edges of G. (That is, the
edge set of G is the disjoint union of the edge sets of these cycles.)

Solution We would prove this by strong induction on the number of vertices. For the induction basis,
consider a graph with with a single vertex and the proposition holds trivially. Assume that this holds for
all graphs with up to n vertices for n ≥ 2. Now consider a graph G with n + 1 vertices. Since each vertex
in G is even and of degree at least 2, so G is not a tree (no vertex of degree 1). Thus, there is at least one
cycle C in the graph. If G is not this cycle, let G′ be the subgraph (possibly disconnected) obtained from
G by deleting all the edges belonging to C. Since every vertex in a cycle is of degree 2 and every vertex in
G′ is also even, by the induction hypothesis G′ has a set of edges that is the disjoint union of edge sets of
cycles. Thus, the set of edges of G will be the disjoint union of edge sets of G′ and the deleted cycle.
Conversely, consider a graph with a single vertex (set of edges is empty). Obviously, the vertex has an even
degree. Assume that this holds for all graphs with up to n vertices for n ≥ 2. Now consider a connected
graph G with n + 1 vertices such that the set of edges in G is the disjoint union of m cycles. Consider any
one of these cycles, say C. Since G is connected, there is a vertex in common between C and the rest of
the graph G′, obtained by omitting the edges in cycle C from the set of edges of G. Since every vertex in
a cycle has degree 2, and by our induction hypothesis all vertices in G1 have even degrees, all vertices in
G will have even degrees. This concludes the proof.

Exercise 6 (10 points). Given a graph G, its line graph L(G) is defined as follows:

• Every edge of G corresponds to a unique vertex of L(G).

• Any two vertices of L(G) are adjacent if and only if their corresponding edges in G share a common
endpoint.

Prove that if G is regular and connected then L(G) is Eulerian.

Solution If the degree of regular graph G is d, then every edge of G has 2(d − 1) neighbours in L(G).
Since this is even, L(G) is Eulerian.

Exercise 7 (10 points). Prove that if a graph has at most m vertices of degree at most n and all other
vertices have degree at most k, with k < n and m < n, then the graph is colorable with m + k + 1 colors.

Solution First consider the reduced problem of coloring the graph minus the m vertices of degree at
most n and all edges involving those vertices. From the lecture notes, since all remaining vertices have
degree k or less, k + 1 colors are enough for this reduced graph. Then if we restore the original graph and
assign one color not used to each of the m vertices, the resulting graph can be colored using m + k + 1
colors.

Exercise 8 (15 points). Let G be a simple graph with n vertices. Prove that if G does not have K3 as an
induced subgraph, G has at most bn2

4 c edges.
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Solution Let k be the maximal degree of G. Find the vertex of maximal degree v (pick any if there are
more than one). This produces k edges. None of the neighbors of v are connected to each other as it would
produce a 3-cycle, so they are connected to at most n−k vertices. The other n−k vertices (including v) are
connected to at most k vertices. Thus the total number of edges is bounded by 1/2∗(k(n−k)+k(n−k)) =
k(n− k). Maximizing happens when k = n/2 which produces the desired bound.
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