CS 103X: Discrete Structures
Homework Assignment 7 — Solutions

Exercise 1 (10 points). In a survey on the gelato preferences of college students, the following data was
obtained:

e 78 like mixed berry
e 32 like irish cream
e 57 like tiramisu
e 13 like both mixed berry and irish cream
e 21 like both irish cream and tiramisu
e 16 like both tiramisu and mixed berry
e 5 like all three flavours above
e 14 like none of these three flavours
How many students were surveyed?
Solution Let the set of students who like mixed berry be M, those who like tiramisu be T" and those

who like irish cream be I. Then, by the inclusion-exclusion principle, the number of students who like at
least one of the flavours is

IMUTUI| = |M|+|T|+I|-|MNT|—|TNIl—|MNIl+|MnTnNI|
= T8+32+57-16—-21-13+5
= 122

Now there are an additional 14 who like none of these three flavours, so the total number of students
surveyed was 122 4 14 = 136.

Exercise 2 (10 points). In a mathematics contest with three problems, 80% of the participants solved the
first problem, 75% solved the second and 70% solved the third. Prove that at least 25% of the participants
solved all three problems. (The claim might seem obvious — find a proof.)

Solution Let the total number of participants be n > 0 (if n = 0, the proof is trivial). Denote the
set of people who missed the first problem by A, the set of people who missed the second by B, and the
set who missed the third by C. We know that |A| = n — 0.8n = 0.2n, |B| = n — 0.75n = 0.25n and
|C| =n —0.7n = 0.3n. We also know, from the lecture notes, that

|JAUBUC| <|A| +|B| +|C| = 0.2n + 0.25n 4 0.3n = 0.75n

The set of people who solved all three problems is the complement of AU B U C (the set who missed at
least one problem), so it has size

n—|AUBUC|>n—0.75n = 0.25n

Therefore at least 25% of the participants solved all three problems.



Exercise 3 (20 points).

(a)

(b)

What is the number of integer solutions of the equation

r1 + x9 + x3 = 50,
such that x; > 0 for each 1 <7 < 37
What is the number of integer solutions of the equation

z1 + xo + x3 = 50,
such that 0 < x; <19 for each 1 < ¢ < 37

Solution

(a)

We need to distribute 50 “units” between 3 variables. The situation is equivalent to distributing 50
balls into 3 bins, or analogously, selecting an unordered collection of 50 balls of 3 types, where those
of the first type will go in the first bin, those of the second type in the second bin, and those of the
third type in the third bin. The number of options for this is (3+gg_1) = (gg) = 1326. This is also
the requested number of solutions.

For 1 <1 <3, let S; be the set of solutions in which x; > 20. Then the requested number of solutions
is
3
Us:
i=1
using the result of part (a). For 1 <i < j <3, define S; ; = S;N.S;. Finally, let S123 = S1NS2N.S3.

1326 —

)

The inclusion exclusion principle implies that

3
Usi
i=1

Let us analyze the summands on the right side in turn. |Si| is the number of solutions in which
x1 > 20. This is equivalent to counting solutions to the equation

— [S1,3] +1S1,2,3]-

3
= 18 = S12] = 52,3
=1

z) + z9 + x3 = 30,
where 2| = 21 — 20, and thus 2/, z2, 23 > 0. The argument in part (a) implies that |.S;| = (322) = 496.
The derivation for |S2| and |S3| is symmetric.

Similarly, |S; 2| is equal to the number of nonnegative solutions to
) + 25 + 23 = 10,

which is 66 and is also equal to | Sz 3| and |S 3|. Finally, |S; 23| = 0. Putting all the values together

we get
3

Us:
i=1
and the requested number of solutions is

=3 x 496 — 3 x 66 = 1290

1326 — 1290 = 36.

Exercise 4 (10 points). Let p(1),p(2),...,p(n) be some permutation of the first n positive integers, where
n is odd. Prove that the product

n

[16G-pG)

i=1

is necessarily even. (Assume as usual that an even number need not be positive.) Is the condition that n
is odd necessary?



Solution First, observe that if any one of the factors in a product of integers is even, the whole product
must be even. Assume, for the sake of contradiction, that all the factors (i — p(i)) are odd. This implies
that for every pair {i,p(i)}, either i is odd and p(i) is even, or p(i) is odd and i is even. Now since n is
odd, i is odd in exactly (n + 1)/2 cases, and in each of those cases p(i) must be even. But there are only
(n — 1)/2 even numbers between 1 and n, so by the pigeonhole principle two of the p(i)’s must be equal.
This is a contradiction since p is a permutation of distinct numbers.

The condition that n is odd is necessary. Else, for even n, consider this permutation:

) 7+ 1 if 4 1is odd
p(i) =

7—1 1if 4 is even

It is easy to verify that this is indeed a permutation (it would not be if n was odd since it would map n to
n+ 1), and that it swaps successive pairs of elements. Evidently, each of the factors (i — p(i)) has absolute
value 1, and hence the whole product has absolute value 1 and is odd.

Exercise 5 (15 points). Consider the numbers 1,2,...,2n, and take any n + 1 of them. Prove that there
are two numbers i, j in this sample such that i|j.

Solution For 1 <i < n, define a subset A; of {1,2,...,2n} as follows:
Ai={r€A:JaeN:z=(2i—1) x2}.

The set A; includes the i-th odd number and the products of that number with powers of 2, up to 2n.
These sets have the property that for any two distinct numbers a,b € A;, either a | b or b | a. Crucially,
every integer between 1 and 2n belongs to exactly one such subset, because we can uniquely represent
every non-zero integer as the product of an odd integer and a (possibly zero-th) power of 2 (prove this by
induction!). Thus we treat these n subsets as pigeonholes, and the n+ 1 numbers in the sample as pigeons.
By the pigeonhole principle, at least one set A; has two members of the sample and this produces the i, j
to satisfy the claim.

Note that unlike many pigeonhole problems, the sets A; have different cardinalities. For example Ay
has |logy(2n)] + 1 members, while |A4;| = 1 for [n/2] < i < n. Also note that the property that every
integer in {1,2,...,2n} is in ezactly one A; is not necessary for the proof: the pigeonhole principle works
even if the “pigeonholes” overlap — do you see why?

Exercise 6 (15 points). For each of the following pairs of functions f,g : Nt — R, state with a brief
justification whether f(z) is O(g(x)), Q2(g(x)), ©(g(z)), or none of the above.

(a) f(z)=a"", g(z) = 2%

(b) f(x) = cos(z), g(x) = 2% sin(x). (z is measured in degrees here.)
(c) f(z) = V=, g(z) =log, =

Solution

(a) f(z) = O(g(x)). Taking the logarithm (base 2) of both functions gives log, f(z) = 2?log, z and
logy g(x) = 2%. From the basic rules in the lecture notes about logarithms, polynomials, and expo-
nents we know 22 logy z = O(2%). Thus f(z) = O(g(z)) (take the constant ¢ from x?log, z = O(27%)
and set ¢; = 2¢ to get the constant for f,g; the ng constant is the same for both the logs of the
functions and the originals).

(b) None of the above. Since z is in degrees for the trigonometric functions, when z is a multiple of
180, g(x) = 0 and |f(x)| = 1 and when 2 =180 90, f(x) = 0 and |g(z)| > 0. Thus no ¢ exists with
|f(z)] < clg(x)| or vice versa, so none of the relations apply.



(c) f(z) = ©(g(x)). Note that g(x) =1 for all z € N*. We can show that f(z) < 2 for all x € N*:
Consider the equation y = f(z) and rearrange to y* = x. Since 2% > x, y < 2 for all x € N*. Clearly
f(z) > 1 for all z € N*. These bounds ensure that g(z) < f(z) < 2g(zx), so f(z) = O(g(z)).

Exercise 7 (20 points). Prove or disprove the following properties:

(a) For f,g,p,q: N" =R, if f(n) = O(p(n)) and g(n) = O(q(n)), then f(g(n)) = O(p(q(n)).

(b) For f,p:NT = R and g,q: Nt — Nt if f(n) = O(p(n)), g(n) = O(g(n)), and p(n),q(n) > 0 for all
n, then (£(n)?") = O((p(n))").

Solution

(a) This does not hold for all functions f, g,p,q. A counterexample is f(n) = #, g(n) =n, p(n) = #,

and g(n) = n?. Since a smaller polynomial power is always big-O of a larger one, f(n) = O(p(n))
and g(n) = O(q(n)). The composed functions are f(g(n)) = n—lg and p(q(n)) = %. For any positive
constant ¢, f(g(n)) > ¢(p(g(n))) when n > ¢, so f(g(n)) # O(p(qg(n))). Note that observing that
p(g(n)) = O(f(g(n))) is not sufficient to conclude f(g(n)) # O(p(q(n))).

(b) This also does not hold for all functions. For a simple example, take f(n) = p(n) = 2, g(n) = 2n,
and g(n) = n. Clearly these fit the given big-O conditions. The combined functions are (f(n))9(™ =
22" = 4™ and (p(n))4(™ = 27, 4™ £ O(2") — for any positive constant ¢, when n > log, ¢, 4" > ¢-2".



