CS 103X: Discrete Structures
Final Exam — Solutions

March 21, 2007

Exercise 1 (10 points). Prove that all odd perfect squares are congruent to 1 modulo 4.

Solution The square roots of odd perfect squares are of course odd, and all odd numbers are congruent
to either 1 or 3 modulo 4. The square of a number that is 1 modulo 4 is also 1 modulo 4, while the square
of a number that is 3 modulo 4 is congruent to (3 x 3) modulo 4, or 1 modulo 4.

(Alternative solution: The square of an even integer is even, so an odd perfect square is the square of
an odd integer — let this integer be n = 2k + 1. Then n? = 4n% 4+ 4n + 1 = 4(n? + n) + 1, which obviously
leaves a remainder of 1 when divided by 4.)

Exercise 2 (10 points). Consider a relation o< on the set of functions from N*t to R, such that f o g if

and only if f = O(g). Is o an equivalence relation? A partial order? A total order? Prove.

Solution It is none of the above. Recall that an equivalence relation is reflexive, symmetric, and tran-
sitive. oc is reflexive and transitive but not symmetric — let f(n) = n, g(n) = n%2. Here f = O(g) but
g # O(f). Tt is also clearly not antisymmetric; if f(n) = n and g(n) = 2n, f = O(g) and g = O(f) but
f # g. This prevents o from being a partial order, and thus it is not a total order also.

Exercise 3 (10 points). You are given the following predicate on the set P of all people who ever lived:
Parent(x,y): true if and only if = is the parent of y.
(a) Rewrite in the language of mathematical logic (you may assume the equality/inequality operators):
All people have two parents.
(b) We will recursively define the concept of ancestor:

An ancestor of a person is one of the person’s parents or the ancestor of (at least) one of
the person’s parents.

Rewrite this definition using the language of mathematical logic. Specifically, you need to provide
a necessary and sufficient condition for the predicate Ancestor(z,y) to be true. (Note that you can
inductively use the Ancestor(-,-) predicate in the condition itself.)

Solution

(a)

Vere P dy,z€ P (Parent(y, x) A Parent(z,x) Ay # z)

(b)
Vz,y € P: (Ancestor(:p,y) < (Parent(z,y) V (3z € P : (Parent(z, y) A Ancestor(z, z)))))

Exercise 4 (10 points). The drama club has m members and the dance club has n members. For an
upcoming musical, a committee of k people needs to be formed with at least one member from each club.
If the clubs have exactly r members in common, what is the number of ways the committee may be chosen?
Substantiate.



Solution There are m + n — r total people to choose from, so without the restriction the number of

ways is (m+£_r). Then we subtract the ways that won’t work, which is when no people from one club are

chosen. There are m — r only in the dance club and n — 7 only in the drama club. Thus there are (mk_ T)
ways to choose while having no one from the drama club chosen, and (”;T) ways to pick no one from the

dance club. Subtracting these gives a final answer of (mﬂ?*r) - (m; T) - (";T)

Exercise 5 (10 points). How many nonnegative integers less than or equal to 300 are coprime with 1447
Substantiate.

Solution 144 has a prime factorization of all 2’s and 3’s. So, by inclusion-exclusion, the answer is
300 — (number divisible by 2) — (number divisible by 3) + (number divisible by 2 and 3). Of course,
the last is the same as the number divisible by 6. Since 300 is divisible by 2,3, and 6, the formula is
300 — 300 — 330 4 390 — 300 — 150 — 100 + 50 = 100.

Exercise 6 (10 points). How many simple directed (unweighted) graphs on the set of vertices {v1, v, ..., v, }
are there that have at most one edge between any pair of vertices? (That is, for two vertices a, b, only at
most one of the edges (a,b) and (b, a) is in the graph.) For this question vertices are distinct and isomorphic
graphs are not the same. Substantiate your answer.

Solution There are (g) possible unordered pairs of vertices. For each pair {a,b}, we may have only the
edge (a,b), or only the edge (b,a), or no edge at all between vertices a and b, giving a total of 3 mutually

exclusive possibilities. So the required number of graphs is 3(3) = gn(n-1)/2,

(Note: A number of students proposed the following solution — if we remove the directionality of the
edges, the resulting graph is a simple undirected graph by the given conditions. Let it have k edges, out

of a possible maximum of (g) There are ((%)) ways to pick these edges, and 2¥ ways to assign directions
to them, so the total number of possible graphs is

(5)
3 (2) o
k
k=0
This is a correct solution and recieved full credit. However, the answer can be drastically simplified by
observing that the above sum is nothing but the expansion, by the Binomial Theorem, of (2+ 1)(’5) —3(3) )

Exercise 7 (10 points). You already know from Bezout’s Identity that if @ and b are coprime integers,
then there are integers z and y such that ax 4+ by = 1. Now prove the same result using the Pigeonhole
Principle. (You may assume that a and b are positive.)

Hint: Take the remainders, modulo b, of the first b — 1 positive multiples of a, and consider what happens
if 1 is not in this set.

Solution a and b are coprime, so at most one of @ and b can be 1. Without loss of generality assume
b # 1 — this ensures b1 a. We can rewrite ax + by = 1 as ax = (—y)b+ 1. This suggests that we consider
the remainders of multiples of @ modulo b, i.e. the integers a rem b,2a rem b,3a rem b, ..., (b — 1)a rem b.
Assume, for the sake of contradiction, that none of them is 1. Then, since there are b — 1 of them and
they all lie in the set {2,3,...,b — 1} (0 is absent since b t a), which has b — 2 elements, the Pigeonhole
Principle tells us that two of them must be equal. Say pa rem b = ga rem b, for 1 < p, ¢ < b. This implies
pa = qa, or (p — q)a =, 0. But since a and b are coprime, this means p — ¢ is a multiple of b, which is
impossible since p and ¢ are unequal positive integers less than b (so 0 < [p — ¢| < b). Hence we have
reached a contradiction and 1 must be one of the remainders, say pa rem b = 1. Then pa = gb+ 1 for some
q, and choosing = = p, y = —q we get the required result.

Exercise 8 (10 points). Prove that at a cocktail party with ten or more people, there are either three
mutual acquaintances or four mutual strangers.



Solution The proof is analogous to the cocktail party example in the Pigeonhole Principle chapter in
the lecture notes. Pick an arbitrary person a — if a knows at least 4 people then of these 4 either all are
mutual strangers or at least two of them know each other (giving, with a, a set of 3 mutual acquaintances)
and we are done. If ¢ knows at most 3 people, then there are 6 people a does not know. By the result in
the lecture notes, this set of six people contains either 3 mutual acquaintances or 3 mutual strangers. If
the former, we are done. If the latter, then along with a, we have a set of 4 mutual strangers.

Exercise 9 (10 points). Given a (simple, undirected) graph G, its line graph L(G) is defined as follows:
e Every edge of G corresponds to a unique vertex of L(G).

e Any two vertices of L(G) are adjacent if and only if their corresponding edges in G share a common
endpoint.

Prove that if G is regular and connected then L(G) is Eulerian.

Solution If v is a vertex and e an edge of G, let L(e) and L(v) represent their corresponding edge and
vertex, respectively, in L(G). We will first show that the line graph is connected. Take any pair of edges e
and €’ and let v be an endpoint of e and v’ be an endpoint of ¢. Then by connectivity of G, there is a path
V,€1,V2,€2, ..., Vm, em, v in G. In L(G), by definition, L(e) and L(e;) are adjacent (linked by the edge
L(v)), e1 and ey are adjacent, and so on. So there is a path L(e), L(v), L(e1), L(va), . .., L(en), L(v"), L(¢'),
and L(e) and L(e’) are connected. Since the two edges were arbitrarily chosen, L(G) is connected.

Now observe that if all vertices in G have the same degree k in GG, then every edge shares a vertex with
k — 1 other edges at each of its two endpoints. Since the graph is simple, these two sets of £ — 1 edges
are mutually exclusive. So each edge shares an endpoint with ezactly 2(k — 1) other edges in G, i.e. each
vertex of L(G) has exactly 2(k — 1) neighbours, or in other words has even degree. Now, applying Theorem
15.1.1, we see that L(G) must have an Eulerian tour.

Exercise 10 (10 points). Let G be a (simple, undirected) graph that has no induced subgraphs that are
P, or (5. Prove that GG is bipartite.

Solution Since we know a graph is bipartite if and only if it has no odd cycles, we can equivalently prove
that G has no odd cycles. Then by taking the contrapositive, it is equivalent to prove that any graph with
an odd cycle has either Py or ('3 as an induced subgraph. From here we proceed by contradiction, assume
there exists some graph G with an odd cycle and no induced subgraphs that are Py or C3. Obviously,
if this cycle is length 3, then C3 is an induced subgraph. If the length is 5 or greater, select any four
adjacent points in the cycle (i.e. points A, B, C, D such that edges AB, BC,CD are part of the cycle) and
consider the induced subgraph on those four. If the cycle edges are the only ones present, Py is an induced
subgraph. If not, then one of the edges AC, BD, AD must be in the original graph. If AC is, then we
have an induced C5 subgraph on A, B, C, and if BD is then there is an induced C5 on B,C, D. The only
remaining possibility is that AD is present; then we can make a new cycle by removing AB, BC,CD from
the original cycle and adding AD. This new cycle has length 2 less than the original, so it is still odd.
Since this is the only possibility that does not immediately produce a C'5 or Py, we can repeat this process
to examine progressively smaller cycles. But then eventually we will create a cycle of length 3, the shortest
possible odd-cycle length, which produces a Cs induced subgraph. This is a contradiction, and thus any
graph with an odd cycle must have either Py or (5 as an induced subgraph. This completes the proof.

(Note: The word “induced” is very important here! See the definition of “induced subgraph” in the lecture
notes — it is not the same as a “subgraph”.)



