
Chapter 3

Finite elements for mixed and
saddle points problems

3.1 Galerkin method for mixed problems

Notations and setting. The notation is the same as in the abstract framework
introduced in the previous chapter. Let (X, ‖ · ‖X) and (M, ‖ · ‖M ) be two real
Hilbert spaces and a : X × X → R and b : X × M → R be two continuous
bilinear forms. For f ∈ X ′ and g ∈ M ′, the following problem is considered
Find (u, p) ∈ X ×M such that, for all (v, q) ∈ X ×M

{
a(u, v) + b(v, p) = 〈f, v〉,

b(u, q) = 〈g, q〉. (3.1)

This chapter focuses on the approximation of problem (3.1) by a Galerkin method.
To simplify the presentation, it is assumed that a(·, ·) is coercive on V × V — that
is,

∃α > 0, a(v, v) ≥ α‖v‖2, ∀ v ∈ V, (3.2)

which implies assumption (i) of Theorem 2.5 (by the Lax-Milgram theorem). In
addition, we assume that the inf-sup condition (2.9) holds true on X × M . Thus,
assumptions (i) and (ii) of Theorem 2.5 are fulfilled. This ensures that problem (3.1)
is well-posed.

As in any Galerkin type method (see Section 1.2), finite dimensional subspaces
Xh of X and Mh of M are considered, and the following discrete problem, which is
the mixed Galerkin approximation of problem (3.1), is introduced
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34CHAPTER 3. FINITE ELEMENTS FOR MIXED AND SADDLE POINTS PROBLEMS

Find (uh, ph) ∈ Xh ×Mh, such that for all (vh, qh) ∈ Xh ×Mh,
{

a(uh, vh) + b(vh, ph) = 〈f, vh〉,
b(uh, qh) = 〈g, qh〉.

(3.3)

Operators Ah : Xh → X ′
h and Bh : Xh → M ′

h can be defined as in the continuous
case by

〈Ahuh, vh〉 = a(uh, vh), ∀ (uh, vh) ∈ Xh ×Xh, (3.4)

〈Bhvh, qh〉 = b(vh, qh), ∀ (vh, qh) ∈ Xh ×Mh. (3.5)

The dual operator of Bh is denoted by BT
h and is defined by BT

h : Mh → X ′
h,

〈BT
h qh, vh〉 = b(vh, qh) = 〈Bhvh, qh〉, for all (vh, qh) ∈ Xh ×Mh.

Differences with coercive problems. When a problem can be studied using
the Lax-Milgram theorem on a space X, any of its finite dimensional internal ap-
proximation on Xh ⊂ X can also be treated by the Lax-Milgram theorem. The
well-posedness of the discrete problem is therefore a straightforward consequence
of the well-posedness of the continuous problem. In contrast, the well-posedness of
problem (3.1) does not imply in general that its discrete counterpart (3.3) is also
well-posed. The reason for this is twofold:

• First, if one defines

Vh = KerBh = {uh ∈ Xh,∀ qh ∈ Mh, b(uh, qh) = 0}, (3.6)

then Vh is not necessarily included in V (for example, for the Stokes
problem, uh ∈ Vh does not imply that uh is divergence free). Thus, the
fact that the continuous problem satisfies property (i) of Theorem 2.1
on V does not imply that the discrete problem satisfies the analogous
property on Vh.

• Second, the inf-sup condition on X ×M ,

∃β > 0, inf
q∈M

sup
v∈X

b(v, q)
‖v‖X‖q‖M

≥ β,

only implies

∃β > 0, inf
qh∈Mh

sup
v∈X

b(v, qh)
‖v‖X‖qh‖M

≥ β,

which is an inf-sup condition on X ×Mh. The latter does not imply
in general an inf-sup condition on Xh ×Mh, since X ⊃ Xh.

Therefore, it is necessary to assume that assumptions (i) and (ii) of Theorem 2.5
are satisfied by the discrete problem on Xh × Mh itself. This assumption is very
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strong, since in many practical cases the inf-sup condition is not satisfied if spaces
Xh and Mh are not chosen adequately. This difficulty will be illustrated later for the
Stokes problem. For now, it will be assumed that one is able to build Xh and Mh

that satisfy the inf-sup condition. Then, the following theorem gives an estimate
of the error of the Galerkin method by the interpolation error. In other words, the
following theorem is the analogous of the Céa Lemma (Theorem 1.3, p. 10) for
mixed problems.

Theorem 3.1
Assume that the coercivity hypothesis (3.2) on V and the inf-sup condition (2.9) on
X ×M hold and let (u, p) be the solution of (3.1). Assume in addition that1

(i) ∃αh > 0 such that ∀ vh ∈ Vh, a(vh, vh) ≥ αh‖vh‖2
X .

(ii) ∃βh > 0, such that inf
qh∈Mh

sup
vh∈Xh

b(vh, qh)
‖vh‖X‖qh‖M

≥ βh.

Then problem (3.3) admits a unique solution and this solution satisfies

‖u− uh‖X ≤
(

1 +
‖a‖
αh

) (
1 +

‖b‖
βh

)
inf

vh∈Xh

‖u− vh‖X

+
‖b‖
αh

inf
qh∈Mh

‖p− qh‖M , (3.7)

and

‖p− ph‖X ≤ ‖a‖
βh

(
1 +

‖a‖
αh

) (
1 +

‖b‖
βh

)
inf

vh∈Xh

‖u− vh‖X

(
1 +

‖b‖
βh

+
‖a‖‖b‖
αhβh

)
inf

qh∈Mh

‖p− qh‖M . (3.8)

Considering the standard interpolation errors estimates (like (1.26) and (1.27)
p. 13), this result readily gives the convergence of the mixed Galerkin method.
To achieve an optimal convergence rates, αh and βh are typically required to be
independent of h.

The proof of Theorem 3.1 is much more involved than its counterpart in the
coercive framework. It is based on the two following lemmas concerning the following
set

Vh(g) = {vh ∈ Xh, Bhvh = g}
= {vh ∈ Xh, b(vh, qh) = 〈g, qh〉,∀qh ∈ Mh}.

(3.9)

The reader can observe that the space Vh introduced in (3.6) is nothing but Vh(0).

Lemma 3.1 Assume that
1Space Vh is defined in (3.6).
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(i) ∃αh > 0 such that ∀ vh ∈ Vh, a(vh, vh) ≥ αh‖vh‖2
X .

(ii) The set Vh(g) is non-empty.

Then, the problem of finding uh ∈ Vh(g) such that for all vh ∈ Vh

a(uh, vh) = 〈f, vh〉

has a unique solution. In addition, this solution satisfies

‖u− uh‖X ≤
(

1 +
‖a‖
α

)
inf

zh∈Vh(g)
‖u− zh‖X +

‖b‖
α

inf
qh∈Mh

‖p− qh‖M .

The following Lemma shows the role played by the discrete inf-sup condition in the
approximation property of the set Vh(g).

Lemma 3.2 Assume that the inf-sup condition is satisfied on Xh ×Mh — that is,

∃βh > 0, such that inf
qh∈Mh

sup
vh∈Xh

b(vh, qh)
‖vh‖X‖qh‖M

≥ βh.

Let u ∈ X such that b(u, q) = 〈g, q〉,∀q ∈ M . Then

inf
zh∈Vh(g)

‖u− zh‖ ≤
(

1 +
‖b‖
βh

)
inf

vh∈Xh

‖u− vh‖X . (3.10)

Remark 3.1 Lemma 3.2 is useful for understanding the so-called locking phenom-
ena (see Section 3.4).

3.2 Algebraic aspects

Consider a basis (ϕi)i=1..Nu

(
respectively, (ψi)i=1..Np

)
of Xh (respectively of Mh).

Any element uh ∈ Xh and ph ∈ Mh can be decomposed on these bases as follows

uh =
Nu∑

i=1

Uiϕi, and ph =
Np∑

i=1

Piψi.

Denote by U the vector (U1, .., UNu)T ∈ RNu , and by P the vector (P1, .., PNp)T ∈
RNp . In the sequel, this notation is systematically used

(
for example, V = (V1, . . . , VNu) ∈

RNu represents the coordinates of vh on (ϕi)i=1..Nu

)
.

Although all norms are equivalent in a finite dimensional space, it is useful to intro-
duce the following specific ones. For any V ∈ RNu , define

‖V‖X = ‖vh‖X , ‖V‖∗ = sup
W∈RNu

(V,W)
‖W‖X

,
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where vh =
∑

i=1..Nu
Viϕi. In the same spirit, for any Q ∈ RNp , define

‖Q‖M = ‖qh‖M ,

where qh =
∑

i=1..Np
Qiψi.

Denote by F the vector (〈f, ϕ1〉, .., 〈f, ϕNu〉)T ∈ RNu and define the following matri-
ces

A = [a(ϕj , ϕi)]i,j=1..Nu
, B = [b(ϕj , ψi)]i=1..Np,j=1..Nu

, (3.11)

where the index i indicates the rows and j the columns. Assuming for simplicity
that g = 0, problem (3.3) takes the following algebraic form

Find (U,P) ∈ RNu × RNp such that
[

A BT

B 0

] [
U

P

]
=

[
F

0

]
. (3.12)

This problem is sometimes referred to as the primal problem. If the unknown U
is eliminated from system (3.12), we obtain the so-called dual problem2

(
BA−1BT

)
P =

(
BA−1

)
F. (3.13)

Once the dual problem is solved, U can be recovered by solving

AU = F− BTP.

Let

S =

[
A BT

B 0

]
.

The following proposition summarizes important properties of the matrices intro-
duced above.

Proposition 3.1
Assume that a(·, ·) is symmetric and coercive on Xh × Xh and that an inf-sup
condition holds on Xh ×Mh. Then,

(i) Matrix A is symmetric positive definite.
(ii) Matrix BT is injective (thus B has full column rank).
(iii) Matrix BA−1BT is symmetric positive definite.
(iv) Matrix S is symmetric, invertible, non-definite. More precisely it has Nu

positive and Np negative eigenvalues.

2The matrix BA−1BT is the Schur complement with respect to P.
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Proof.
(i) This is an immediate consequence of the symmetry and coercivity of a(·, ·).
(ii) From the satisfaction of the inf-sup condition, it follows that

∀qh ∈ Mh, sup
vh∈Xh

b(vh, qh)
‖vh‖X

≥ βh‖qh‖M ,

which after introducing the vectors V ∈ RNu and Q ∈ RNp representing vh and qh

gives

∀Q ∈ RNp , sup
V∈RNu

(BV,Q)
‖V‖∗

≥ βh‖Q‖M .

Thus, using the above definition of ‖ ·‖ ∗, one can write

∀Q ∈ RNp , ‖BT Q‖∗ ≥ βh‖Q‖M ,

which shows that BT is indeed injective (and therefore B has full column rank).
(iii) This property is the immediate consequence of the two previous ones.
(iv) Notice that

S =

[
A BT

B 0

]
=

[
A 0

B I

]

︸ ︷︷ ︸

[
A−1 0

0 −BA−1BT

]

︸ ︷︷ ︸

[
A BT

0 I

]

︸ ︷︷ ︸
P S̃ PT

Since detP = det A &= 0, it follows that P is non singular. Thus S and S̃ are the
representation of the same quadratic form in two different basis. From the Sylvester
inertia theorem, one knows that the signature of a matrix (i.e. the number of
positive, negative and zero eigenvalues) is independent of the basis in which it is
written. Since S̃ has Nu positive and Np negative eigenvalues, it follows that S has
Nu positive and Np negative eigenvalues too. !

Remark 3.2 (Algebraic inf-sup condition.) In point (ii) of Proposition 3.1, it
was shown that the inf-sup condition on Xh ×Mh yields

KerBT = {0}.

Conversely, if KerBT = {0}, for all Q ∈ RNp of norm 1, BTQ &= 0. The application
Q → BTQ is continuous and does not vanish on the unit sphere. In finite dimension,
the unit sphere being compact, there exists βh such that for all Q ∈ RNp with ‖Q‖M =
1,

‖BTQ‖∗ ≥ βh,

and hence the inf-sup condition. It is very convenient to realize that, at the discrete
level, stating the inf-sup condition is equivalent to stating that matrix BT is injective
(or matrix B has full column rank). Nevertheless, note that because the constant βh

depends a priori on h, the convergence rate may be non optimal.
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Remark 3.3 (Spurious mode.) If the inf-sup condition does not hold, KerBT !=
{0}, i.e. there exists P∗ ∈ RNp − {0} such that BTP∗ = 0. Thus, the linear systems
(3.12) and (3.13) are ill-posed. Indeed, if (U,P) is a solution of (3.12), one can
build an infinite number of solutions (U,P + kP∗), k ∈ R. Such a vector P∗ is often
called a spurious mode (or a spurious pressure in the context of the hydrodynamic
equations). In such a case, the approximation by Xh and Mh is said to be unstable.

Dual problem. Typically, it is more convenient to solve a symmetric positive
definite problem than a non-definite one. This motivates the solution of the dual
problem instead of the primal one. Since BA−1BT is symmetric positive definite,
the dual problem is often solved by a gradient based iterative method such as the
Uzawa algorithm. The convergence properties of this iterative method are related
to the condition number of the matrix B A−1 BT which can be evaluated using the
following result.

Lemma 3.3 For all Q ∈ RNp,

(BA−1BT Q,Q) = sup
V∈RNu

(BV,Q)2

(AV,V)
.

Proof. Indeed,

(BA−1BT Q,Q) = (BT Q,A−1BT Q) = (AV,V), where V = A−1BT Q.

Furthermore, the reader can easily verify that

(AV,V) = sup
W∈RNu

(AV,W)2

(AW,W)
,

for example, by applying the Cauchy-Schwarz inequality using the scalar product
(A·, ·). Thus,

(BA−1BT Q,Q) = sup
W∈RNu

(AV,W)2

(AW,W)
= sup

W∈RNu

(BT Q,W)2

(AW,W)
.

!

Proposition 3.2
Denote by α the coercivity constant of a(·, ·) on X×X and by β the inf-sup constant
of b(·, ·) on X × M . Let Mp denote the mass matrice on the space M — that is,
Mp = [(ψj , ψi)]i,j=1..Np . Then,

κ(M−1
p BA−1BT ) ≤ ‖a‖‖b‖2

αβ2
.
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Proof. From Lemma 3.3, it follows that

(BA−1BT Q,Q) = sup
V∈RNu

(BV,Q)2

(AV,V)
= sup

V∈RNu

(BV,Q)2

‖vh‖2
X

‖vh‖2
X

(AV,V)
.

From the continuity of a(·, ·), it follows that

(AV,V) = a(vh, vh) ≤ ‖a‖‖vh‖2
X ,

and from the inf-sup condition, one concludes that

sup
V∈RNu

(BV,Q)2

‖vh‖2
X

= sup
vh∈X

b(vh, qh)2

‖vh‖2
X

≥ β2‖qh‖2
M = β2(MpQ,Q).

Hence,

(BA−1BT Q,Q) ≥ β2

‖a‖(MpQ,Q).

Furthermore, from the coercivity of a(·, ·) and the continuity of b(·, ·), it follows that

(BA−1BT Q,Q) = sup
V∈RNu

(BV,Q)2

‖vh‖2
X

‖vh‖2
X

(AV,V)
≤ ‖b‖2

α
‖qh‖2

M =
‖b‖2

α
(MpQ,Q).

Therefore,
β2

‖a‖(MpQ,Q) ≤ (BA−1BT Q,Q) ≤ ‖b‖2

α
(MpQ,Q),

which, given Proposition 1.3, p. 14, concludes the proof. !

It is interesting to compare the result of Proposition 3.2 with the results of
Section 1.2.3, p. 13: whereas the condition number of the stiffness matrix typically
grows as 1/h2, Proposition 3.2 shows that the condition number of the dual problem
is essentially independent of h (as long as α and β are independent of h). This
explains why the Uzawa method is popular for solving the algebraic systems of
equations arising from mixed finite element methods. Nevertheless, it may happen
that the ratio “continuity over coercivity constants” be very large (for example,
when using a small time step for solving a transient problem). In such a case, better
preconditioners than the mass matrix need be developed.

3.3 Finite Element for the Stokes problem

In this section, a few example of stable finite element spaces are discussed for the
solution of the Stokes problem.
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3.3.1 A result to prove the inf-sup condition

The following result is sometimes useful for proving that a proposed finite element
pair of spaces satisfies the inf-sup condition.

Theorem 3.2 (Fortin’s Lemma.)
Assume the inf-sup condition holds on X ×M — that is,

inf
q∈M

sup
v∈X

b(v, q)
‖v‖X‖q‖M

≥ β.

Let Xh ⊂ X and Mh ⊂M . An inf-sup condition holds on Xh×Mh with a constant
β∗ independent of h if and only if there exists a restriction operator Πh ∈ L(X, Xh)
and a constant C > 0 independent of h such that

(i) ∀v ∈ X, b(Πhv − v, qh) = 0,∀qh ∈Mh.

(ii) ∀v ∈ X, ‖Πhv‖X ≤ C‖v‖X .

Proof.
⇐ For qh ∈Mh,

supvh∈Xh

b(vh, qh)
‖vh‖X

≥ supv∈X
b(Πhv, qh)
‖Πhv‖X

≥ 1
C

sup
v∈X

b(v, qh)
‖v‖X

≥ β

C
‖qh‖M .

Hence, β∗ = β/C.
⇒ Suppose that the inf-sup condition holds in Xh ×Mh with a constant β∗.

In this case, the operator Bh : Xh → M ′
h is an isomorphism from V ⊥

h onto M ′
h and

for the same constant β∗, ‖Bhvh‖M ≥ β∗‖vh‖X . Let v ∈ X. Since the application
qh → b(v, qh) is in M ′

h, there exists a unique element in Xh, denoted by Πhv, such
that

b(Πhv, qh) = b(v, qh),

and

‖Πhv‖X ≤ 1
β∗
‖BhΠhv‖M ′ =

1
β∗
‖Bhv‖M ′ =

1
β∗

sup
qh∈Mh

b(v, qh)
‖qh‖M

≤ ‖b‖
β∗
‖v‖X ,

hence the result, with C = ‖b‖/β∗.!
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Remark 3.4 The operator Πh is often searched for as the sum of two operators Π1

and Π2 where Π1 satisfies

‖Π1v − v‖X ≤ Chs‖v‖X

and Π2 is an operator which is “locally” built (for example, with a bubble function)
in order to satisfy point (i) of Proposition 3.2. See [4], p. 60.

When X = H1
0 (Ω)d (for example, for the Stokes problem), it may be difficult

to build the operator Π1 mentioned in the previous Remark. Indeed, the classical
interpolation operator cannot be used since it typically supposes that v is continuous.
A projection operator could be used instead, but a convexity hypothesis must be
made in order to apply the Aubin-Nitsche theorem. The best solution is to consider
the Clement operator (see [6], Lemma 1.127, p. 60).

Theorem 3.3 (Clément.)
If the mesh family is shape-regular, there exists C > 0 such that ∀v ∈ H1

0 (Ω)d,
∃Rh(v) ∈ X1

h such that ∀K ∈ Th, 0 ≤ l ≤ 1,

‖Rh(v)− v‖l,K ≤ Ch1−l
K ‖v‖1,"K (3.14)

where 'K = ∪K̄′∩K̄ $=∅K
′.

3.3.2 Mixed finite element for the Stokes problem

Section 3.1 has provided the theoretical results needed for analyzing the convergence
of a Galerkin discretization of Problem (3.1). In this section, several finite element
spaces adapted to the discretization of the Stokes equations (1.37) are presented.
The reader is referred to Section 1.2.2 for the notation and the basic results on finite
elements.

Consider a shape-regular family of simplicial meshes (Th)h>0. Denote by Xk
h the

Lagrange finite element space of degree k built on Th.
For example, the spaces Xh and Mh can be defined as Xh = (Xk

h)3∩H1
0 (Ω)3 and

Mh = Xs
h∩L2

0(Ω). In such a case, one says that the problem is solved with the Pr/Ps

finite element, meaning that the velocity (respectively, the pressure) is approximated
in a space of continuous piecewise polynomials of degree r (respectively, s). As
mentioned above, the main difficulty is to find spaces Xh and Mh that satisfy the
inf-sup condition

∃βh > 0, inf
qh∈Mh

sup
vh∈Xh

∫

Ω
qh div vh

‖vh‖1‖qh‖0
≥ βh. (3.15)

For example, the pairs Pr/Pr, r ≥ 1, or P1/P0 are known to be unstable. This means
that the spaces Xh and Mh built on these finite elements do not satisfy the inf-sup
condition (3.15), and therefore the resulting linear system is singular.
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A simple example of a stable pair using the standard spaces Xk
h is the P2/P1

known as the Taylor-Hood finite element (Figure 3.1). The inf-sup constant βh of
this element is independent of h which ensures an optimal convergence rate. The
following result can be proved (see for example [6], section 4.2.5).

P2 P1

Figure 3.1: The Taylor-Hood (P2/P1) finite element.

Proposition 3.3
Assume that the solution of the Stokes problem satisfies u ∈

(
H3(Ω)∩H1

0 (Ω)
)3

and
p ∈ H2(Ω) ∩ L2

0(Ω). Assume moreover that each tetrahedron of the mesh has at
least three edges within Ω. Then, there exists c > 0 such that the solution (uh, ph)
computed with the P2/P1 finite element satisfies for all h > 0

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ ch2(‖u‖3,Ω + ‖p‖2,Ω).

Another popular element is the so-called P1-bubble/P1 pair, also known as the
mini-element . It consists of adding to the P1/P1 element one degree of freedom for
each component of the velocity on the barycenters of the tetrahedra (Figure 3.2).
Let b̂ ∈ H1(K̂) denote a function which takes the value 1 at the barycenter of the

Figure 3.2: The mini (P1-bubble/P1) finite element.

reference K̂, vanishes on its boundary ∂K̂ and verifies 0 ≤ b̂ ≤ 1. Such a function
is known as a “bubble function”. Define then the space

Pb
1,h =

{
vh ∈ C0(Ω̄), vh ◦ FK ∈ P1(K̂)⊕ span{b̂},∀K ∈ Th

}
,

where FK is the application that maps the reference element K̂ on an element K of
Th (see Section 1.2.2). The Stokes problem is said to be solved with the mini-element,
or the P1-bubble/P1 finite element, when one uses the spaces Xh = (Pb

1,h)3∩H1
0 (Ω)3

to approximate the velocity and Mh = X1
h ∩ L2

0(Ω) to approximate the pressure.
As for the Taylor-Hood element, the inf-sup constant βh of the mini-element is
independent of h which ensures an optimal convergence rate. Then, the following
result holds (see for example [6], section 4.2.4).
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Proposition 3.4
Assume that the solution of the Stokes problem satisfies u ∈

(
H2(Ω) ∩ H1

0 (Ω)
)3

and p ∈ H1(Ω) ∩ L2
0(Ω). Then, there exists c > 0 such that the solution (uh, ph)

computed with the P1-bubble/ P1 finite element satisfies for all h > 0

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ ch(‖u‖2,Ω + ‖p‖1,Ω).

The proof of this Proposition is based on Proposition 3.2. Many other examples
of stable pairs can be found in the literature. The interested reader is referred to
V. Girault and P.A. Raviart [7, Chapter 2], F. Brezzi and M. Fortin [4, Chapter 4]
or A. Ern and J.-L. Guermond [6, Chapter 4].

3.4 Locking phenomena

Consider the elasticity problem (1.39) introduced in Section 1.3.3, a finite element
space Xh ⊂ (H1

0 (Ω))d, and the search for uh ∈ Xh such that

2G

∫

Ω
εD(uh) : εD(vh) dx + κ

∫

Ω
div uh div vh dx =

∫

Ω
f · vh dx. (3.16)

When κ is very large (which corresponds to an almost incompressible material),
results of poor quality are obtained when solving this equation. More specifically, it
is observed that the material deforms as if it were much stiffer. In other words, it
appears to “lock” (and hence the name of locking for describing this phenomenon).
Here, it is explained why a mixed method satisfying the inf-sup is a good remedy
for this phenomenon.

First, a heuristic explanation of locking is presented. To this effect, the following
space is introduced

Ṽh(qh) = {vh ∈ Xh,div vh = qh} and Ṽh = Ṽh(0).

Formally, one sees in (3.16) that in the limit κ = ∞, div uh = 0 (divide the equation
by κ and let κ goes to ∞). Thus, the solution uh is constrained to lie in space Ṽh.
Therefore, instead of being controlled by

inf
vh∈Xh

‖u− vh‖1,

the error is actually controlled by

inf
vh∈eVh

‖u− vh‖1.

Whereas the approximation properties of Xh are usually well-known (standard finite
element space, see for example (1.26) and (1.27)), the approximation properties of
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Ṽh are less clear and can be very poor. The extreme case is when Ṽh is reduced to
{0}: the elastic solid is then completely stuck! This explains the locking problem.
This phenomenon would not occur in the presence of an inequality such as

inf
vh∈eVh

‖u− vh‖1 ≤ C inf
vh∈Xh

‖u− vh‖1, (3.17)

where C is a constant independent of h. Indeed in such a case, the approximation
properties of Ṽh would be the same as those of Xh. But inequality (3.17) is not true
in general.

To avoid locking, it has been proposed in the engineering literature to slightly
modify the energy of the problem as follows

Jh(vh) = G

∫

Ω
|εD(vh)|2 dx +

κ

2

∫

Ω
(Ph(div vh))2 dx−

∫

Ω
f · vh dx, (3.18)

where Ph is the L2 projector onto another finite dimensional space Mh (to be de-
termined). Let p ∈ L2(Ω). The reader is reminded that Ph(p) is characterized by
Ph(p) ∈ Mh and ∫

Ω
qhPh(p) dx =

∫

Ω
qhp dx, ∀qh ∈ Mh.

Minimizing Jh over Xh is equivalent to solving

2G

∫

Ω
εD(uh) : εD(vh) dx + κ

∫

Ω
Ph(div uh)Ph(div vh) dx =

∫

Ω
f · vh dx.

Introducing ph = −κPh(div uh) ∈ Mh leads to

κ

∫

Ω
Ph(div uh)Ph(div vh) dx = −

∫

Ω
phPh(div vh) dx = −

∫

Ω
ph div vh dx.

Thus, minimizing the modified energy Jh is equivalent to searching for (uh, qh) ∈
Xh ×Mh such that for all (vh, qh) ∈ Xh ×Mh,






2G

∫

Ω
εD(uh) : εD(vh) dx−

∫

Ω
ph div vh dx =

∫

Ω
f · vh dx,

∫

Ω
qh div uh dx +

1
κ

∫

Ω
qhph dx = 0.

(3.19)

Define the operator Bh as for the Stokes equation by 〈Bhvh, qh〉 = b(vh, qh) with

b(vh, qh) = −
∫

Ω
qh div vh.

Define also the set Vh(g) as in (3.9) and the space Vh = Vh(0) = KerBh as in (3.6).
Since

∫
Ω qh div vh dx =

∫
Ω qhPh(div vh) dx, note that

Bh = Ph(div vh).
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Thus, the space Vh can also be defined as

Vh = {vh ∈ Xh/Ph(div vh) = 0}.

Under this form, the difference with the space Ṽh is now clear. Going back to the
heuristic argument, one sees that when κ goes to infinity, the solution uh to problem
(3.19) is constrained to lie in Vh (instead of Ṽh). Whereas Ṽh was a “hidden” and
not very convenient space, the space Vh is linked to the choice of space Mh. To
choose Mh, a trade-off has to be found between locking and accuracy. On one-hand,
a smaller Mh makes Vh larger and thus, an inequality like (3.17) easier to obtain,
which avoids locking but enforces poorly the incompressibility constraint. On the
other-hand, a larger Mh enforces better the incompressibility constraint but leads
to a smaller Vh and therefore is likely to introduce locking

(
since inequality (3.17)

is more difficult to achieve with a small Vh

)
. The heuristic is now clear. However, it

does not help choosing Mh. The inf-sup condition does. Indeed, it has been proved
in Lemma 3.2 that if Mh is chosen so that the inf-sup condition holds with a constant
independent of h, then inequality (3.10) holds, i.e.

inf
vh∈Vh

‖u− vh‖1 ≤ C inf
vh∈Xh

‖u− vh‖1.

In other words, whereas inequality (3.17) is not true in general, it is actually verified
as soon as the energy J is replaced by Jh

(
defined in (3.18)

)
with a projector Ph

on a space Mh such that the inf-sup condition holds on Xh × Mh. This explains
why the introduction of a well-chosen projector in the energy can indeed be a good
remedy to the locking phenomenon.

Remark 3.5 Locking is not restricted to quasi-incompressible materials. It is also
encountered, for example, in thin plates and shell problems.


