
Exercise 1 (Darcy equations) Let Ω be a smooth bounded domain
of Rd, and n the outward unit normal on ∂Ω. Let f ∈ (L2(Ω))d,
g ∈ H1/2(∂Ω) and k ∈ L2(Ω). This problem deals with two different
weak formulations of the Darcy equations.

Preliminary remarks

• Property 1: Let f ∈ L2(Ω) (strictly, it is sufficient that f ∈ L1
loc(Ω)).

Then, if

∀φ ∈ C∞0 (Ω)
∫

Ω
fφ = 0,

f = 0 almost everywhere in Ω. One can write f = 0.

This result can be extended to vector valued functions f ∈ (L2(Ω))d.

• Property 2: Let f ∈ L2(Ω). If ∀q ∈ L2(Ω)∫
Ω
fq = 0

then f = 0 almost everywhere in Ω.

Proof: Consider q = f . Then

‖f‖2
L2(Ω) =

∫
Ω
f2 = 0.

• About the trace of H(div; Ω) functions.

It is well-known that one can define the trace ofH1(Ω) functions on ∂Ω
whereas it is not possible to define the trace of a L2(Ω) function. The
space of traces of H1(Ω) functions is H1/2(∂Ω) (which in particular
contains L2(∂Ω)). A H(div; Ω) function is less regular than a H1(Ω)d

function, nevertheless a notion of normal trace on ∂Ω can still be
defined for H(div; Ω). The definition relies on the following equality:
Let u and φ be smooth functions,∫

∂Ω
u · nφ =

∫
Ω
u ·∇φ+

∫
Ω
φdiv u.

Note that the right-hand side makes sense for a function φ ∈ H1(Ω).
In such a case, in the left-hand side, u ·n acts on a H1/2(∂Ω) function.
It is therefore natural to define, by density, the normal trace u · n of
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any function u ∈ H(div; Ω) as the linear form acting on H1/2(∂Ω).
Thus u ·n is an element of the dual of H1/2(∂Ω), which is denoted by
H−1/2(∂Ω).

In conclusion, if u ∈ H(div; Ω), then u · n|∂Ω ∈ H−1/2(∂Ω) is defined
by:

〈u · n, φ〉 =
∫

Ω
u ·∇φ+

∫
Ω
φdiv u, ∀φ ∈ H1/2(∂Ω).

Thus in particular

‖u · n‖H−1/2 ≤ C‖u‖H(div;Ω).

Let v ∈ H(div; Ω) and g ∈ H1/2(∂Ω). Strictly speaking, it is not
correct to write ∫

∂Ω
v · ng.

One should rather write 〈v ·n, g〉. But we will accept the integral form
as an abuse of notations.

For those of you who are not familiar with these notions and spaces,
it is perfectly acceptable for this course (homeworks and exams) to
do formal computations assuming that all the functions are regular
enough to give a sense to the integrations by parts. The most im-
portant thing is to be able to derive (even formally) a PDE and the
boundary conditions from a variational formulation.

Part 1

Consider the problem: Search for (u, p) ∈ H(div; Ω)×L2(Ω) such
that for all (v, q) ∈ H(div; Ω)× L2(Ω)

(P )


∫

Ω
u · v −

∫
Ω
pdiv v =

∫
Ω
f · v +

∫
∂Ω
gv · n∫

Ω
q div u =

∫
Ω
kq

1) What are the partial differential equations and the bound-
ary conditions corresponding to this problem? Are the boundary
conditions enforced naturally or essentially ?

∀v ∈ C∞0 (Ω)
⋂
H(div; Ω)

−
∫

Ω
p div v =

∫
Ω
(f − u) · v.
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p is therefore weakly differentiable since∣∣∣∣∫
Ω
p div v

∣∣∣∣ ≤ C‖v‖L2(Ω).

Defining weak partial derivatives ∂p
∂xi
, i = 1, ..., d,∫

Ω
(u + ∇p− f) · v = 0,

Using Property 1, u + ∇p = f and ∇p ∈ L2(Ω). Therefore, p ∈ H1(Ω) and
p has a trace on ∂Ω.

Choosing now v ∈ H(div; Ω),

−
∫

∂Ω
pv · n =

∫
∂Ω
gv · n,

thus
p|∂Ω = −g.

This Dirichlet boundary condition is enforced naturally.
∀q ∈ L2(Ω) ∫

Ω
q(div u− k) = 0.

Using Property 2, this proves that

div u = k.

In fine, the PDE and BC associated with the problem are
u + ∇p = f in Ω

div u = k in Ω
p = −g on ∂Ω

2) Let q ∈ L2(Ω). Prove there exists a unique Φ ∈ H1
0 (Ω) such

that ∫
Ω
∇Φ ·∇ψ =

∫
Ω
qψ, for all ψ ∈ H1

0 (Ω).

Set v = ∇Φ. Give an estimate (upper bound) of ‖v‖H(div,Ω).
Existence and uniqueness of Φ results from the Lax-Milgram theorem.
Moreover, using Poincare’s inequality∫

Ω
|∇Φ|2 =

∫
Ω
qΦ ≤ ‖q‖L2(Ω)‖Φ‖L2(Ω) ≤ CΩ‖q‖L2(Ω)‖∇Φ‖L2(Ω).
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Thus
‖v‖L2(Ω) = ‖∇Φ‖L2(Ω) ≤ CΩ‖q‖L2(Ω).

From div v = −q,
‖div v‖L2(Ω) ≤ ‖q‖L2(Ω)

and
‖v‖H(div;Ω) ≤ C̃‖q‖L2(Ω),

with C̃ =
√

1 + C2
Ω.

3) Deduce from the previous question that there exists β > 0
such that for all q ∈ L2(Ω),

sup
w∈H(div;Ω)

−
∫

Ω
q div w

‖w‖H(div;Ω)
≥ β‖q‖L2(Ω). (1)

Let q ∈ L2(Ω) and v = ∇Φ be given as in question 2. Then∫
Ω
−q div v =

∫
Ω
q2

and
−

∫
Ω q div v

‖q‖L2(Ω)
= ‖q‖L2(Ω) ≥

1
C̃
‖v‖H(div;Ω).

Thus

sup
w∈H(div;Ω)

−
∫

Ω
q div w

‖w‖H(div;Ω)
≥
−

∫
Ω
q div v

‖v‖H(div;Ω)
≥ 1
C̃
‖q‖L2(Ω).

4) Let q ∈ L2(Ω). Set α = 1
meas(Ω)

∫
Ω q. Construct vα ∈ (H1(Ω))d

such that div vα = α. Prove that the operator div is surjective from
(H1(Ω))d onto L2(Ω).

Hint: Use the following result from the course: the operator
div is surjective from (H1

0 (Ω))d onto L2
0(Ω).

Let α ∈ R. Let’s consider the direction e1, and define

vα = αx1e1.

Then div vα = α.
Let q ∈ L2(Ω). Defining

q0 = q − 1
|Ω|

∫
Ω
q ∈ L2

0(Ω).
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Using the hint, ∃v0 ∈ (H1
0 (Ω))d such that

div v0 = q0 = q − 1
|Ω|

∫
Ω
q = q − div vα.

Letting v = v0 + vα, div v = q with v ∈ (H1(Ω))d, thusd div is surjective
from (H1(Ω))d onto L2(Ω).

5) Deduce from the previous question another proof of (1).
Let q ∈ L2(Ω). Using question 4, there exists v ∈ (H1(Ω))d such that

div v = q. Therefore, v ∈ H(div; Ω). Since the application

H(div; Ω) → L2(Ω)
v 7−→ div v

is continuous, the Brezzi theorem states that the inf-sup condition (1) is
satisfied.

6) Prove that problem (P) is well-posed.
Defining a(u,v) =

∫
Ω u·v, a(u,v) is coercive in V = {v ∈ H(div; Ω), div v =

0}.
Furthermore, b(v, q) satisfies the inf-sup condition inX×M = H(div; Ω)×

L2(Ω).
Defining

< T,v >=
∫

Ω
f · v +

∫
∂Ω
gv · n,

and
< S, q >=

∫
Ω
kq,

T ∈ X ′ since

| < T,v > | ≤ ‖f‖L2(Ω)‖v‖L2(Ω) + ‖g‖H1/2(∂Ω)‖v · n‖H−1/2(∂Ω).

S ∈M ′ since
| < S, q > | ≤ ‖k‖L2(Ω)‖q‖L2(Ω).

This shows that the problem is well-posed.

Part 2

7) Assume that
∫
Ω k +

∫
∂Ω g = 0 and define the space H1R

=0
(Ω) =

{q ∈ H1(Ω),
∫
Ω q = 0} equipped with the norm ‖∇ · ‖L2(Ω). Consider
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the problem: search for (u, p) ∈ (L2(Ω))d×H1R
=0

(Ω) such that for all

(v, q) ∈ (L2(Ω))d ×H1R
=0

(Ω)

(Q)


∫

Ω
u · v +

∫
Ω
∇p · v =

∫
Ω
f · v

−
∫

Ω
∇q · u =

∫
Ω
kq +

∫
∂Ω
gq

What are the partial differential equations and the boundary con-
ditions corresponding to this problem? Are the boundary condi-
tions enforced naturally or essentially ?

Hint: Prove that u ∈ H(div; Ω) and admit the fact that every
function in H(div,Ω) has a well-defined normal trace on ∂Ω

Let v ∈ C∞0 (Ω). ∫
Ω
(u + ∇p− f) · v = 0.

Using Property 1, u + ∇p = f .
Let q ∈ C∞0 (Ω)

⋂
H1R

=0
(Ω). Then∫

Ω
∇q · u =

∫
Ω
kq.

This shows that u is weakly differentiable in terms of its divergence, as∣∣∣∣∫
Ω
∇q · u

∣∣∣∣ ≤ ‖k‖L2(Ω)‖q‖L2(Ω).

Then, one can write

−
∫

∂Ω
u · nq +

∫
Ω
q div u =

∫
Ω
kq

and, as q = 0 on ∂Ω, ∫
Ω
q div u =

∫
Ω
kq.

Using Property 1,
div u = k + C in Ω.

Furthermore this shows that div u ∈ L2(Ω) and thus u ∈ H(div; Ω).
The hint shows that u · n is well-defined on ∂Ω.
Then, letting q ∈ H1R

=0
(Ω),∫

∂Ω
gq +

∫
∂Ω

u · nq = C

∫
Ω
q = 0.
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Then −u · n = g in ∂Ω. This is a natural boundary condition.
Going back to div u = k + C,∫

∂Ω
u · n =

∫
Ω
k + |Ω|C,

that is
−

∫
∂Ω
g −

∫
Ω
k = |Ω|C.

Using the compatibility condition
∫
∂Ω g +

∫
Ω k = 0,

|Ω|C = 0 ⇒ C = 0,

and
div u = k.

The PDE and BC associated with the problem are
u + ∇p = f in Ω

div u = k in Ω
u · n = −g on ∂Ω

8) Prove that problem (Q) is well-posed. a(u,v) =
∫
Ω u · v is

coercive on L2(Ω).
Let b(v, q) =

∫
Ω ∇p · v. Let p ∈ H1R

=0
and v = ∇p ∈ L2(Ω). Then∫

Ω ∇p · v
‖v‖L2(Ω)

=

∫
Ω |∇p|2

‖∇p‖L2(Ω)
= ‖∇p‖L2(Ω).

Thus

sup
v∈L2(Ω)

∫
Ω
v ·∇p

‖v‖L2(Ω)
≥ ‖∇p‖L2(Ω).

This shows that the inf-sup condition is satisfied and the problem is well-
posed.

9) Assume that d = 3 and let Th be a mesh of tetrahedra. Set

Xh = {vh ∈ (L2(Ω))d,∀K ∈ Th,vh|K ∈ (P0(K))d},

Mh = {qh ∈ C0(Ω),∀K ∈ Th, qh|K ∈ P1(K)} ∩H1R
=0(Ω).

Show that the discrete problem resulting from the discretization
of problem (Q) in Xh and Mh is well-posed.
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a(u,v) is coercive on Xh.
Moreover, if ph ∈ Mh, then ∇ph is a piecewise constant function. Thus

for vh = ∇ph ∈ Xh. ∫
Ω ∇ph · vh

‖vh‖L2(Ω)
= ‖∇ph‖L2(Ω).

The inf-sup condition is satisfied and the problem is well-posed.
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