CME358 - Assignment 3

Due date: 05/19/2009
Jean-Frédéric Gerbeau (gerbeau@stanford.edu)

Let Ω be a smooth domain of \mathbb{R}^{d}, and \boldsymbol{n} the outward unit normal on $\partial \Omega$. Let $\boldsymbol{f} \in\left(L^{2}(\Omega)\right)^{d}, g \in H^{1 / 2}(\partial \Omega)$ and $k \in L^{2}(\Omega)$. This problem deals with two different weak formulations of the Darcy equations.

Part 1

Consider the problem: Search for $(\boldsymbol{u}, p) \in H(\operatorname{div} ; \Omega) \times L^{2}(\Omega)$ such that for all $(\boldsymbol{v}, q) \in H(\operatorname{div} ; \Omega) \times L^{2}(\Omega)$

$$
(P)\left\{\begin{aligned}
\int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v}-\int_{\Omega} p \operatorname{div} \boldsymbol{v} & =\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v}+\int_{\partial \Omega} g \boldsymbol{v} \cdot \boldsymbol{n} \\
\int_{\Omega} q \operatorname{div} \boldsymbol{u} & =\int_{\Omega} k q
\end{aligned}\right.
$$

1) What are the partial differential equations and the boundary conditions corresponding to this problem? Are the boundary conditions enforced naturally or essentially?
2) Let $q \in L^{2}(\Omega)$. Prove there exists a unique $\Phi \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla \Phi \cdot \nabla \psi=\int_{\Omega} q \psi, \quad \text { for all } \psi \in H_{0}^{1}(\Omega)
$$

Set $\boldsymbol{v}=\nabla \Phi$. Give an estimate (upper bound) of $\|\boldsymbol{v}\|_{H(\operatorname{div}, \Omega)}$.
3) Deduce from the previous question that there exists $\beta>0$ such that for all $q \in L^{2}(\Omega)$,

$$
\begin{equation*}
\sup _{\boldsymbol{w} \in H(\operatorname{div} ; \Omega)} \frac{-\int_{\Omega} q \operatorname{div} \boldsymbol{w}}{\|\boldsymbol{w}\|_{H(\operatorname{div} ; \Omega)}} \geq \beta\|q\|_{L^{2}(\Omega)} \tag{1}
\end{equation*}
$$

4) Let $q \in L^{2}(\Omega)$. Set $\alpha=\frac{1}{\operatorname{meas}(\Omega)} \int_{\Omega} q$. Construct $\boldsymbol{v}_{\alpha} \in\left(H^{1}(\Omega)\right)^{d}$ such that $\operatorname{div} \boldsymbol{v}_{\alpha}=\alpha$. Prove that the operator div is surjective from $\left(H^{1}(\Omega)\right)^{d}$ onto $L^{2}(\Omega)$.
Hint: Use the following result from the course: the operator div is surjective from $\left(H_{0}^{1}(\Omega)\right)^{d}$ onto $L_{0}^{2}(\Omega)$.
5) Deduce from the previous question another proof of (1).
6) Prove that problem (P) is well-posed.

Part 2

7) Assume that $\int_{\Omega} k+\int_{\partial \Omega} g=0$ and define the space $H_{\int=0}^{1}(\Omega)=\left\{q \in H^{1}(\Omega), \int_{\Omega} q=0\right\}$ equipped with the norm $\|\boldsymbol{\nabla} \cdot\|_{L^{2}(\Omega)}$. Consider the problem: search for $(\boldsymbol{u}, p) \in\left(L^{2}(\Omega)\right)^{d} \times H_{\int=0}^{1}(\Omega)$ such that for all $(\boldsymbol{v}, q) \in\left(L^{2}(\Omega)\right)^{d} \times H_{\int=0}^{1}(\Omega)$

$$
(Q)\left\{\begin{aligned}
\int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v}+\int_{\Omega} \boldsymbol{\nabla} p \cdot \boldsymbol{v} & =\int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \\
-\int_{\Omega} \boldsymbol{\nabla} q \cdot \boldsymbol{u} & =\int_{\Omega} k q+\int_{\partial \Omega} g q
\end{aligned}\right.
$$

What are the partial differential equations and the boundary conditions corresponding to this problem? Are the boundary conditions enforced naturally or essentially?
Hint: Prove that $\boldsymbol{u} \in H($ div $; \Omega)$ and admit the fact that every function in $H($ div, $\Omega)$ has a well-defined normal trace on $\partial \Omega$
8) Prove that problem (Q) is well-posed.
9) Assume that $d=3$ and let \mathcal{T}_{h} be a mesh of tetrahedra. Set

$$
\begin{gathered}
X_{h}=\left\{\boldsymbol{v}_{h} \in\left(L^{2}(\Omega)\right)^{d}, \forall K \in \mathcal{T}_{h},\left.\boldsymbol{v}_{h}\right|_{K} \in\left(\mathbb{P}_{0}(K)\right)^{d}\right\}, \\
M_{h}=\left\{q_{h} \in C^{0}(\Omega), \forall K \in \mathcal{T}_{h},\left.q_{h}\right|_{K} \in \mathbb{P}_{1}(K)\right\} \cap H_{\int=0}^{1}(\Omega) .
\end{gathered}
$$

Show that the discrete problem resulting from the discretization of problem (Q) in X_{h} and M_{h} is well-posed.

