
Exercise 1 (Penalization method) Let (X, ‖ · ‖X) and (M, ‖ · ‖M ) two
Hilbert spaces. We denote by (·, ·)X and (·, ·)M the scalar products associ-
ated to the norms ‖·‖X and ‖·‖M . For f ∈ X ′ and g ∈ M ′, we are interested
in the solution of the following problem: search for (u, p) ∈ X × M such
that for all (v, q) ∈ X ×M :

(P )
{

a(u, v) + b(v, p) = < f, v >,
b(u, q) = < g, q > .

We assume that a(·, ·) et b(·, ·) are bilinear continuous forms on X ×X and
X ×M respectively. We assume there exists β > 0 such that:

∀q ∈ M,∃ v ∈ X, v 6= 0, b(v, q) ≥ β‖v‖X‖q‖M . (1)

and that a(·, ·) is α−coercive.

Let c(·, ·) be a bilinear continuous and γ−coercive form on M ×M and
let C ∈ L(M,M ′) be defined by

< Cp, q >= c(p, q), ∀p, q ∈ M.

We define analogously operator A and B associated to a(·, ·) and b(·, ·) re-
spectively.

1) Prove that problem (P) is well-posed.
Let V = Ker B. a is coercive on X ×X, thus also on V × V . Moreover,

b satisfies the inf-sup condition because of Eq. (1). Therefore Problem (P)
is well-posed.

For 0 < ε < 1, we consider the following problem: find (uε, pε) ∈ X ×M
such that for all (v, q) ∈ X ×M ,

(Pε)
{

a(uε, v) + b(v, pε) = < f, v >,
−εc(pε, q) + b(uε, q) = < g, q > .

2) Prove that (Pε) is equivalent to finding (uε, pε) ∈ X ×M such
that

a(uε, v) +
1
ε

< C−1Buε, Bv > = < f, v > +
1
ε

< C−1g,Bv >,∀v ∈ X(2)

pε =
1
ε
C−1(Buε − g). (3)

∀q ∈ M ,
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−εc(pε, q) = < g, q > −b(uε, q)

−Cpε =
1
ε
g − 1

ε
Buε

pε = −1
ε
C−1g +

1
ε
C−1Buε.

C is invertible since c is coercive on M ×M with constant γ > 0. Hence

b(v, pε) = < BT pε, v >

=
1
ε

< BT C−1Buε, v > −1
ε

< BT C−1g, v >

=
1
ε

< C−1Buε, Bv > −1
ε

< C−1g,Bv >

3) Prove that the problem of the previous question has a unique
solution. Is condition (1) necessary to prove that result?

Defining aε(u, v) = a(u, v) + 1
ε < C−1Bu, Bv >, aε is coercive:

aε(u, u) = a(u, u) +
1
ε

< C−1Bu, Bu >

= a(u, u) +
1
ε

< q,Cq >

≥ α‖u‖2
X +

γ

ε
‖q‖2

M

≥ α‖u‖2
X ,

where q is defined by Cq = Bu.
Moreover, aε is continuous since,

aε(u, v) = a(u, v) +
1
ε

< q,Bv >

≤ ‖a‖‖u‖X‖v‖X +
1
ε
‖B‖‖q‖M‖v‖X

≤ ‖a‖‖u‖X‖v‖X +
‖B‖2

εγ
‖u‖X‖v‖X

where the following inequality has been used

γ‖q‖2
M ≤< Cq, q >=< Bu, q >≤ ‖B‖‖q‖M‖u‖X .

Moreover, the right hand side belongs to X ′. From the Lax-Milgram the-
orem, this problem is well-posed. Note that the inf-sup condition is not
necessary here.
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4) Prove the following inequalities:

‖pε − p‖M ≤ ‖a‖
β
‖uε − u‖X , (4)

a(uε − u, uε − u) ≤ ε
‖a‖ ‖c‖

β
‖uε − u‖X‖p‖M , (5)

Starting from {
Auε + BT pε = f,
Buε − εCpε = g

(6)

and {
Au + BT p = f,

Bu = g,
(7)

A(u− uε) + BT (p− pε) = 0. using the inf-sup condition,

‖BT (p− pε)‖X′ ≥ β‖p− pε‖M .

As
‖A(u− uε)‖X′ ≤ ‖A‖‖u− uε‖X = ‖a‖‖u− uε‖X .

‖p− pε‖M ≤ ‖a‖
β
‖u− uε‖X .

Since A(uε − u) + BT (pε − p) = 0,

< A(uε − u), uε − u > = < p− pε, B(u− uε) >

= < p− pε, εCpε >

= < p− pε, εC(pε − p) > + < p− pε, εCp >

since < p− pε, εC(pε − p) >≤ 0,

< A(uε − u), uε − u > ≤ < p− pε, εCp >

≤ ε‖c‖‖p− pε‖M‖p‖M

≤ ε‖a‖‖c‖
β

‖uε − u‖X‖p‖M

Thus,

‖u− uε‖X ≤ ε‖a‖‖c‖
αβ

‖p‖M .

5) Conclude that there exists C2 > 0 independent of ε such that

‖u− uε‖X + ‖p− pε‖M ≤ C2ε (‖f‖X′ + ‖g‖M ′) . (8)
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We know that

‖p‖M ≤ ‖a‖
β2

(
1 +

‖a‖
α

)
‖g‖M ′ +

1
β

(
1 +

‖a‖
α

)
‖f‖X′ .

Thus
‖u− uε‖X ≤ C1ε(‖f‖X′ + ‖g‖M ′)

and
‖p− pε‖M ≤ ‖a‖

β
C1ε(‖f‖X′ + ‖g‖M ′),

therefore,

‖u− uε‖X + ‖p− pε‖M ≤ C2ε (‖f‖X′ + ‖g‖M ′) .

6) Let ε > 0. Consider the problem: find (uε, pε) ∈ (H1
0 (Ω))3 ×

L2
0(Ω) such that: {

−ν∆uε + ∇pε = f,

pε = −1
ε

div uε.
(9)

Prove that this problem is well-posed and that, when ε goes to 0,
its solution goes to the solution of a problem to be determined.

Applying the result from question 1 with A = −ν∆, B = −div, C = Id
and g = 0, the problem is well-posed.

According to question 5, uε
H1

0−→ u and pε
L2

−→ p where (u, p) is solution
to the Stokes problem.

7) If a(·, ·) and c(·, ·) are symmetric, prove that (9) can be writ-
ten as a minimization problem. Discuss the advantages and the
drawbacks of the resolution of this problem.

From
−ν∆uε −

1
ε
∇ div uε = f

one can define

J(u) =
ν

2

∫
|∇u|2 +

1
2ε

∫
|div u|2 −

∫
fu.

From the Lax-Milgram theorem,

J(uε) = inf J(u).

Resolution of Eq. (9) does not need the inf-sup condition. (On the other
hand, convergence of uε to u and pε to p need the inf-sup condition). The
presence of 1

ε deteriorates the condition number of the problem and may
result in the locking phenomena.

4



Exercise 2 (Augmented Lagrangian method) Let M ∈ N and N ∈ N
with M < N . We denote by | · | the Euclidian norm in RM or RN and
(·, ·) the associated scalar product. Let A be a N × N symmetric positive
definite matrix and b ∈ RN . Let B a full-rank matrix M × N . Define L
from RN × RM on R by:

L(v, q) = J(v) + (q, Bv)

with J(v) = 1
2(Av, v)− (b, v). Lets denote by (u, p) a saddle-point of L: for

all (v, q) ∈ RN × RM : L(u, q) ≤ L(u, p) ≤ L(v, p). Let r > 0, lets define

Lr(v, q) = L(v, q) +
r

2
|Bv|2.

We define the sequences (un)n∈N and (pn)n∈N as follows. Let p0 ∈ RM .
For n ≥ 0, assuming pn is known, we compute un ∈ RN solution to

Lr(un, pn) ≤ Lr(v, pn),∀v ∈ RN , (10)

then, we set
pn+1 = pn + ρnBun, (11)

where ρn is a given positive number. We assume that ∀n, 0 < α ≤ ρn ≤ 2r,
where α is given. We set δun = u− un and δpn = p− pn.

1) Show that (10) is equivalent to

(A + rBT B)un + BT pn = b

Lr(v, pn) = L(v, pn) +
r

2
|Bv|2 =

1
2
(Av, v)− (b, v) + (pn, Bv) +

r

2
|Bv|2.

Let ε > 0.

Lr(v+εw, pn)−Lr(v, pn) = ε

(
1
2
(Aw, v) +

1
2
(Av,w)− (b, w) + (pn, Bw) + r(BT Bv, w)

)
.

Since A is symmetric

Lr(v+εw, pn)−Lr(v, pn) = ε
(
(Av,w)− (b, w) + (BT pn, w) + r(BT Bv, w)

)
.

Thus

L′r(v, pn).w = (Av,w)− (b, w) + (BT pn, w) + r(BT Bv, w)
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and if un is a global minimum in the open set RN , necessarily

L′r(un, pn).w = 0, ∀w ∈ RN ⇔ Aun − b + BT pn + rBT Bun.

2) Show that

|δpn|2 − |δpn+1|2 = 2ρn(Aδun, δun) + ρn(2r − ρn)|Bδun|2

|δpn|2 − |δpn+1|2 = |δpn|2 − |δpn − ρnBun|2

= 2(ρnBun, δpn)− ρ2
n|Bun|2

Since Bu = 0,

|δpn|2 − |δpn+1|2 = −2(ρnBδun, δpn)− ρ2
n|Bun|2

Moreover,
Au + BT p = b

and
Aun + BT pn = b− rBT Bun.

Therefore,
BT δpn = −Aδun + rBT Bun

and

|δpn|2 − |δpn+1|2 = −2(ρnδun,−Aδun + rBT Bun)− ρ2
n|Bun|2

= 2ρn(Aδun, δun)− 2ρnr(δun, BT (−Bδun))− ρn|Bδun|2

= 2ρn(Aδun, δun) + ρn(2r − ρn)|Bδun|2

3) Show that δpn converges. Deduce that un → u and pn → p as
n →∞.

Since 2r−ρn > 0, and A is symmetric positive definite, |δpn|2−|δpn+1|2 ≤
0 and thus the sequence |δpn|2 is decreasing and lower bounded by zero.
Therefore it converges.

Since
(A + rBT B)δun = −BT δpn

and the matrix (A + rBT B) is symmetric definite positive (SPD), thus in-
vertible, δun converges as well.
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Since 2ρn(Aδun, δun) + ρn(2r − ρn)|Bδun|2 converges to zero and is
the sum of two positive terms, each term converges to zero. In particu-
lar |2ρn(Aδun, δun)| ≥ |2α(Aδun, δun)| > 0 converges to zero and so does
δun since A is SPD. Thus un → u.

Going back to
BT δpn = −(A + rBT B)δun

since B is of full-rank M , BT ∈ RN×M is injective and δpn → 0, thus
pn → p.

4) Show that any saddle point of L is a saddle point of Lr and
conversely.

• Let (u, p) be a saddle point of L. Thus,

Au + BT p = b, Bu = 0.

Letting (v, q) ∈ RN × RM ,

Lr(u, q) = L(u, q) ≤ L(u, p) = Lr(u, p) ≤ L(v, p) ≤ Lr(v, p).

(u, p) is a saddle point of Lr.

• Let (ur, pr) be a saddle point of Lr. We showed that

(A + rBT B)ur = b−BT pr.

Since Lr(ur, q) ≤ Lr(ur, pr), ∀q ∈ RM ,

(q, Bur) ≤ (pr, Bur), ∀q ∈ RM .

Necessarily, choosing q 6= 0 and −q shows that Bur = 0.

Then Aur = b − BT pr. These two equalities show that (ur, pr) is a
saddle point for L as well.
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