Exercise 1 (Penalization method) Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(M,\|\cdot\|_{M}\right)$ two Hilbert spaces. We denote by $(\cdot, \cdot)_{X}$ and $(\cdot, \cdot)_{M}$ the scalar products associated to the norms $\|\cdot\|_{X}$ and $\|\cdot\|_{M}$. For $f \in X^{\prime}$ and $g \in M^{\prime}$, we are interested in the solution of the following problem: search for $(u, p) \in X \times M$ such that for all $(v, q) \in X \times M$:

$$
(P)\left\{\begin{aligned}
a(u, v)+b(v, p) & =<f, v>, \\
b(u, q) & =<g, q>.
\end{aligned}\right.
$$

We assume that $a(\cdot, \cdot)$ et $b(\cdot, \cdot)$ are bilinear continuous forms on $X \times X$ and $X \times M$ respectively. We assume there exists $\beta>0$ such that:

$$
\begin{equation*}
\forall q \in M, \exists v \in X, v \neq 0, b(v, q) \geq \beta\|v\|_{X}\|q\|_{M} \tag{1}
\end{equation*}
$$

and that $a(\cdot, \cdot)$ is α-coercive.
Let $c(\cdot, \cdot)$ be a bilinear continuous and γ-coercive form on $M \times M$ and let $C \in \mathcal{L}\left(M, M^{\prime}\right)$ be defined by

$$
<C p, q>=c(p, q), \quad \forall p, q \in M
$$

We define analogously operator A and B associated to $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ respectively.

1) Prove that problem (P) is well-posed.

Let $V=\operatorname{Ker} B . a$ is coercive on $X \times X$, thus also on $V \times V$. Moreover, b satisfies the inf-sup condition because of Eq. (1). Therefore Problem (P) is well-posed.

For $0<\varepsilon<1$, we consider the following problem: find $\left(u_{\varepsilon}, p_{\varepsilon}\right) \in X \times M$ such that for all $(v, q) \in X \times M$,

$$
\left(P_{\varepsilon}\right)\left\{\begin{aligned}
a\left(u_{\varepsilon}, v\right)+b\left(v, p_{\varepsilon}\right) & =<f, v>, \\
-\varepsilon c\left(p_{\varepsilon}, q\right)+b\left(u_{\varepsilon}, q\right) & =<g, q>.
\end{aligned}\right.
$$

2) Prove that $\left(P_{\varepsilon}\right)$ is equivalent to finding $\left(u_{\varepsilon}, p_{\varepsilon}\right) \in X \times M$ such that

$$
\begin{align*}
a\left(u_{\varepsilon}, v\right)+\frac{1}{\varepsilon}<C^{-1} B u_{\varepsilon}, B v> & =\langle f, v\rangle+\frac{1}{\varepsilon}\left\langle C^{-1} g, B v\right\rangle, \forall v \in X(2) \\
p_{\varepsilon} & =\frac{1}{\varepsilon} C^{-1}\left(B u_{\varepsilon}-g\right) \tag{3}
\end{align*}
$$

$$
\forall q \in M,
$$

$$
\begin{aligned}
-\epsilon c\left(p_{\epsilon}, q\right) & =<g, q>-b\left(u_{\epsilon}, q\right) \\
-C p_{\epsilon} & =\frac{1}{\epsilon} g-\frac{1}{\epsilon} B u_{\epsilon} \\
p_{\epsilon} & =-\frac{1}{\epsilon} C^{-1} g+\frac{1}{\epsilon} C^{-1} B u_{\epsilon}
\end{aligned}
$$

C is invertible since c is coercive on $M \times M$ with constant $\gamma>0$. Hence

$$
\begin{aligned}
b\left(v, p_{\epsilon}\right) & =<B^{T} p_{\epsilon}, v> \\
& =\frac{1}{\epsilon}<B^{T} C^{-1} B u_{\epsilon}, v>-\frac{1}{\epsilon}<B^{T} C^{-1} g, v> \\
& =\frac{1}{\epsilon}<C^{-1} B u_{\epsilon}, B v>-\frac{1}{\epsilon}<C^{-1} g, B v>
\end{aligned}
$$

3) Prove that the problem of the previous question has a unique solution. Is condition (1) necessary to prove that result?

Defining $a_{\epsilon}(u, v)=a(u, v)+\frac{1}{\epsilon}<C^{-1} B u, B v>, a_{\epsilon}$ is coercive:

$$
\begin{aligned}
a_{\epsilon}(u, u) & =a(u, u)+\frac{1}{\epsilon}<C^{-1} B u, B u> \\
& =a(u, u)+\frac{1}{\epsilon}<q, C q> \\
& \geq \alpha\|u\|_{X}^{2}+\frac{\gamma}{\epsilon}\|q\|_{M}^{2} \\
& \geq \alpha\|u\|_{X}^{2}
\end{aligned}
$$

where q is defined by $C q=B u$.
Moreover, a_{ϵ} is continuous since,

$$
\begin{aligned}
a_{\epsilon}(u, v) & =a(u, v)+\frac{1}{\epsilon}<q, B v> \\
& \leq\|a\|\|u\|_{X}\|v\|_{X}+\frac{1}{\epsilon}\|B\|\|q\|_{M}\|v\|_{X} \\
& \leq\|a\|\|u\|_{X}\|v\|_{X}+\frac{\|B\|^{2}}{\epsilon \gamma}\|u\|_{X}\|v\|_{X}
\end{aligned}
$$

where the following inequality has been used

$$
\gamma\|q\|_{M}^{2} \leq<C q, q>=<B u, q>\leq\|B\|\|q\|_{M}\|u\|_{X}
$$

Moreover, the right hand side belongs to X^{\prime}. From the Lax-Milgram theorem, this problem is well-posed. Note that the inf-sup condition is not necessary here.

4) Prove the following inequalities:

$$
\begin{gather*}
\left\|p_{\varepsilon}-p\right\|_{M} \leq \frac{\|a\|}{\beta}\left\|u_{\varepsilon}-u\right\|_{X} \tag{4}\\
a\left(u_{\varepsilon}-u, u_{\varepsilon}-u\right) \leq \varepsilon \frac{\|a\|\|c\|}{\beta}\left\|u_{\varepsilon}-u\right\|_{X}\|p\|_{M} \tag{5}
\end{gather*}
$$

Starting from

$$
\left\{\begin{array}{l}
A u_{\varepsilon}+B^{T} p_{\varepsilon}=f, \tag{6}\\
B u_{\varepsilon}-\varepsilon C p_{\varepsilon}=g
\end{array}\right.
$$

and

$$
\left\{\begin{align*}
A u+B^{T} p & =f \tag{7}\\
B u & =g
\end{align*}\right.
$$

$A\left(u-u_{\varepsilon}\right)+B^{T}\left(p-p_{\varepsilon}\right)=0$. using the inf-sup condition,

$$
\left\|B^{T}\left(p-p_{\varepsilon}\right)\right\|_{X^{\prime}} \geq \beta\left\|p-p_{\varepsilon}\right\|_{M}
$$

As

$$
\begin{gathered}
\left\|A\left(u-u_{\varepsilon}\right)\right\|_{X^{\prime}} \leq\|A\|\left\|u-u_{\varepsilon}\right\|_{X}=\|a\|\left\|u-u_{\varepsilon}\right\|_{X} . \\
\left\|p-p_{\varepsilon}\right\|_{M} \leq \frac{\|a\|}{\beta}\left\|u-u_{\varepsilon}\right\|_{X} .
\end{gathered}
$$

Since $A\left(u_{\varepsilon}-u\right)+B^{T}\left(p_{\varepsilon}-p\right)=0$,

$$
\begin{aligned}
<A\left(u_{\varepsilon}-u\right), u_{\varepsilon}-u> & =\left\langle p-p_{\varepsilon}, B\left(u-u_{\varepsilon}\right)>\right. \\
& =<p-p_{\varepsilon}, \varepsilon C p_{\varepsilon}> \\
& =<p-p_{\varepsilon}, \varepsilon C\left(p_{\varepsilon}-p_{)}>+\left\langle p-p_{\varepsilon}, \varepsilon C p>\right.\right.
\end{aligned}
$$

since $<p-p_{\varepsilon}, \varepsilon C\left(p_{\varepsilon}-p\right)>\leq 0$,

$$
\begin{aligned}
<A\left(u_{\varepsilon}-u\right), u_{\varepsilon}-u> & \leq<p-p_{\varepsilon}, \varepsilon C p> \\
& \leq \varepsilon\|c\|\left\|p-p_{\varepsilon}\right\|_{M}\|p\|_{M} \\
& \leq \frac{\varepsilon\|a\|\|c\|}{\beta}\left\|u_{\varepsilon}-u\right\|_{X}\|p\|_{M}
\end{aligned}
$$

Thus,

$$
\left\|u-u_{\varepsilon}\right\|_{X} \leq \frac{\varepsilon\|a\|\|c\|}{\alpha \beta}\|p\|_{M} .
$$

5) Conclude that there exists $C_{2}>0$ independent of ε such that

$$
\begin{equation*}
\left\|u-u_{\varepsilon}\right\|_{X}+\left\|p-p_{\varepsilon}\right\|_{M} \leq C_{2} \varepsilon\left(\|f\|_{X^{\prime}}+\|g\|_{M^{\prime}}\right) . \tag{8}
\end{equation*}
$$

We know that

$$
\|p\|_{M} \leq \frac{\|a\|}{\beta^{2}}\left(1+\frac{\|a\|}{\alpha}\right)\|g\|_{M^{\prime}}+\frac{1}{\beta}\left(1+\frac{\|a\|}{\alpha}\right)\|f\|_{X^{\prime}}
$$

Thus

$$
\left\|u-u_{\varepsilon}\right\|_{X} \leq C_{1} \varepsilon\left(\|f\|_{X^{\prime}}+\|g\|_{M^{\prime}}\right)
$$

and

$$
\left\|p-p_{\varepsilon}\right\|_{M} \leq \frac{\|a\|}{\beta} C_{1} \varepsilon\left(\|f\|_{X^{\prime}}+\|g\|_{M^{\prime}}\right)
$$

therefore,

$$
\left\|u-u_{\varepsilon}\right\|_{X}+\left\|p-p_{\varepsilon}\right\|_{M} \leq C_{2} \varepsilon\left(\|f\|_{X^{\prime}}+\|g\|_{M^{\prime}}\right) .
$$

6) Let $\varepsilon>0$. Consider the problem: find $\left(\boldsymbol{u}_{\varepsilon}, p_{\varepsilon}\right) \in\left(H_{0}^{1}(\Omega)\right)^{3} \times$ $L_{0}^{2}(\Omega)$ such that:

$$
\left\{\begin{align*}
-\nu \Delta \boldsymbol{u}_{\varepsilon}+\nabla p_{\varepsilon} & =f \tag{9}\\
p_{\varepsilon} & =-\frac{1}{\varepsilon} \operatorname{div} \boldsymbol{u}_{\varepsilon} .
\end{align*}\right.
$$

Prove that this problem is well-posed and that, when ε goes to 0 , its solution goes to the solution of a problem to be determined.

Applying the result from question 1 with $A=-\nu \Delta, B=-\operatorname{div}, C=I d$ and $g=0$, the problem is well-posed.

According to question 5, $u_{\varepsilon} \xrightarrow{H_{0}^{1}} u$ and $p_{\varepsilon} \xrightarrow{L^{2}} p$ where (u, p) is solution to the Stokes problem.
7) If $a(\cdot, \cdot)$ and $c(\cdot, \cdot)$ are symmetric, prove that (9) can be written as a minimization problem. Discuss the advantages and the drawbacks of the resolution of this problem.

From

$$
-\nu \Delta u_{\varepsilon}-\frac{1}{\varepsilon} \nabla \operatorname{div} u_{\varepsilon}=f
$$

one can define

$$
J(u)=\frac{\nu}{2} \int|\nabla u|^{2}+\frac{1}{2 \varepsilon} \int|\operatorname{div} u|^{2}-\int f u .
$$

From the Lax-Milgram theorem,

$$
J\left(u_{\varepsilon}\right)=\inf J(u) .
$$

Resolution of Eq. (9) does not need the inf-sup condition. (On the other hand, convergence of u_{ε} to u and p_{ε} to p need the inf-sup condition). The presence of $\frac{1}{\varepsilon}$ deteriorates the condition number of the problem and may result in the locking phenomena.

Exercise 2 (Augmented Lagrangian method) Let $M \in \mathbb{N}$ and $N \in \mathbb{N}$ with $M<N$. We denote by $|\cdot|$ the Euclidian norm in \mathbb{R}^{M} or \mathbb{R}^{N} and (\cdot, \cdot) the associated scalar product. Let A be a $N \times N$ symmetric positive definite matrix and $b \in \mathbb{R}^{N}$. Let B a full-rank matrix $M \times N$. Define \mathcal{L} from $\mathbb{R}^{N} \times \mathbb{R}^{M}$ on \mathbb{R} by:

$$
\mathcal{L}(v, q)=J(v)+(q, B v)
$$

with $J(v)=\frac{1}{2}(A v, v)-(b, v)$. Lets denote by (u, p) a saddle-point of \mathcal{L} : for all $(v, q) \in \mathbb{R}^{N} \times \mathbb{R}^{M}: \mathcal{L}(u, q) \leq \mathcal{L}(u, p) \leq \mathcal{L}(v, p)$. Let $r>0$, lets define

$$
\mathcal{L}_{r}(v, q)=\mathcal{L}(v, q)+\frac{r}{2}|B v|^{2}
$$

We define the sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(p_{n}\right)_{n \in \mathbb{N}}$ as follows. Let $p_{0} \in \mathbb{R}^{M}$. For $n \geq 0$, assuming p_{n} is known, we compute $u_{n} \in \mathbb{R}^{N}$ solution to

$$
\begin{equation*}
\mathcal{L}_{r}\left(u_{n}, p_{n}\right) \leq \mathcal{L}_{r}\left(v, p_{n}\right), \forall v \in \mathbb{R}^{N} \tag{10}
\end{equation*}
$$

then, we set

$$
\begin{equation*}
p_{n+1}=p_{n}+\rho_{n} B u_{n} \tag{11}
\end{equation*}
$$

where ρ_{n} is a given positive number. We assume that $\forall n, 0<\alpha \leq \rho_{n} \leq 2 r$, where α is given. We set $\delta u_{n}=u-u_{n}$ and $\delta p_{n}=p-p_{n}$.

1) Show that (10) is equivalent to

$$
\begin{gathered}
\left(A+r B^{T} B\right) u_{n}+B^{T} p_{n}=b \\
\mathcal{L}_{r}\left(v, p_{n}\right)=\mathcal{L}\left(v, p_{n}\right)+\frac{r}{2}|B v|^{2}=\frac{1}{2}(A v, v)-(b, v)+\left(p_{n}, B v\right)+\frac{r}{2}|B v|^{2}
\end{gathered}
$$

Let $\epsilon>0$.
$\mathcal{L}_{r}\left(v+\epsilon w, p_{n}\right)-\mathcal{L}_{r}\left(v, p_{n}\right)=\epsilon\left(\frac{1}{2}(A w, v)+\frac{1}{2}(A v, w)-(b, w)+\left(p_{n}, B w\right)+r\left(B^{T} B v, w\right)\right)$.
Since A is symmetric
$\mathcal{L}_{r}\left(v+\epsilon w, p_{n}\right)-\mathcal{L}_{r}\left(v, p_{n}\right)=\epsilon\left((A v, w)-(b, w)+\left(B^{T} p_{n}, w\right)+r\left(B^{T} B v, w\right)\right)$.
Thus

$$
\mathcal{L}_{r}^{\prime}\left(v, p_{n}\right) \cdot w=(A v, w)-(b, w)+\left(B^{T} p_{n}, w\right)+r\left(B^{T} B v, w\right)
$$

and if u_{n} is a global minimum in the open set \mathbb{R}^{N}, necessarily

$$
\mathcal{L}_{r}^{\prime}\left(u_{n}, p_{n}\right) \cdot w=0, \quad \forall w \in \mathbb{R}^{N} \Leftrightarrow A u_{n}-b+B^{T} p_{n}+r B^{T} B u_{n} .
$$

2) Show that

$$
\begin{aligned}
&\left|\delta p_{n}\right|^{2}-\left|\delta p_{n+1}\right|^{2}=2 \rho_{n}\left(A \delta u_{n}, \delta u_{n}\right)+\rho_{n}\left(2 r-\rho_{n}\right)\left|B \delta u_{n}\right|^{2} \\
& \begin{aligned}
\left|\delta p_{n}\right|^{2}-\left|\delta p_{n+1}\right|^{2} & =\left|\delta p_{n}\right|^{2}-\left|\delta p_{n}-\rho_{n} B u_{n}\right|^{2} \\
& =2\left(\rho_{n} B u_{n}, \delta p_{n}\right)-\rho_{n}^{2}\left|B u_{n}\right|^{2}
\end{aligned}
\end{aligned}
$$

Since $B u=0$,

$$
\left|\delta p_{n}\right|^{2}-\left|\delta p_{n+1}\right|^{2}=-2\left(\rho_{n} B \delta u_{n}, \delta p_{n}\right)-\rho_{n}^{2}\left|B u_{n}\right|^{2}
$$

Moreover,

$$
A u+B^{T} p=b
$$

and

$$
A u_{n}+B^{T} p_{n}=b-r B^{T} B u_{n} .
$$

Therefore,

$$
B^{T} \delta p_{n}=-A \delta u_{n}+r B^{T} B u_{n}
$$

and

$$
\begin{aligned}
\left|\delta p_{n}\right|^{2}-\left|\delta p_{n+1}\right|^{2} & =-2\left(\rho_{n} \delta u_{n},-A \delta u_{n}+r B^{T} B u_{n}\right)-\rho_{n}^{2}\left|B u_{n}\right|^{2} \\
& =2 \rho_{n}\left(A \delta u_{n}, \delta u_{n}\right)-2 \rho_{n} r\left(\delta u_{n}, B^{T}\left(-B \delta u_{n}\right)\right)-\rho_{n}\left|B \delta u_{n}\right|^{2} \\
& =2 \rho_{n}\left(A \delta u_{n}, \delta u_{n}\right)+\rho_{n}\left(2 r-\rho_{n}\right)\left|B \delta u_{n}\right|^{2}
\end{aligned}
$$

3) Show that δp_{n} converges. Deduce that $u_{n} \rightarrow u$ and $p_{n} \rightarrow p$ as $n \rightarrow \infty$.

Since $2 r-\rho_{n}>0$, and A is symmetric positive definite, $\left|\delta p_{n}\right|^{2}-\left|\delta p_{n+1}\right|^{2} \leq$ 0 and thus the sequence $\left|\delta p_{n}\right|^{2}$ is decreasing and lower bounded by zero. Therefore it converges.

Since

$$
\left(A+r B^{T} B\right) \delta u_{n}=-B^{T} \delta p_{n}
$$

and the matrix $\left(A+r B^{T} B\right)$ is symmetric definite positive (SPD), thus invertible, δu_{n} converges as well.

Since $2 \rho_{n}\left(A \delta u_{n}, \delta u_{n}\right)+\rho_{n}\left(2 r-\rho_{n}\right)\left|B \delta u_{n}\right|^{2}$ converges to zero and is the sum of two positive terms, each term converges to zero. In particular $\left|2 \rho_{n}\left(A \delta u_{n}, \delta u_{n}\right)\right| \geq\left|2 \alpha\left(A \delta u_{n}, \delta u_{n}\right)\right|>0$ converges to zero and so does δu_{n} since A is SPD. Thus $u_{n} \rightarrow u$.

Going back to

$$
B^{T} \delta p_{n}=-\left(A+r B^{T} B\right) \delta u_{n}
$$

since B is of full-rank $M, B^{T} \in \mathbb{R}^{N \times M}$ is injective and $\delta p_{n} \rightarrow 0$, thus $p_{n} \rightarrow p$.
4) Show that any saddle point of \mathcal{L} is a saddle point of \mathcal{L}_{r} and conversely.

- Let (u, p) be a saddle point of \mathcal{L}. Thus,

$$
A u+B^{T} p=b, \quad B u=0 .
$$

Letting $(v, q) \in \mathbb{R}^{N} \times \mathbb{R}^{M}$,

$$
\mathcal{L}_{r}(u, q)=\mathcal{L}(u, q) \leq \mathcal{L}(u, p)=\mathcal{L}_{r}(u, p) \leq \mathcal{L}(v, p) \leq \mathcal{L}_{r}(v, p) .
$$

(u, p) is a saddle point of \mathcal{L}_{r}.

- Let $\left(u_{r}, p_{r}\right)$ be a saddle point of \mathcal{L}_{r}. We showed that

$$
\left(A+r B^{T} B\right) u_{r}=b-B^{T} p_{r} .
$$

Since $\mathcal{L}_{r}\left(u_{r}, q\right) \leq \mathcal{L}_{r}\left(u_{r}, p_{r}\right), \quad \forall q \in \mathbb{R}^{M}$,

$$
\left(q, B u_{r}\right) \leq\left(p_{r}, B u_{r}\right), \quad \forall q \in \mathbb{R}^{M} .
$$

Necessarily, choosing $q \neq 0$ and $-q$ shows that $B u_{r}=0$.
Then $A u_{r}=b-B^{T} p_{r}$. These two equalities show that $\left(u_{r}, p_{r}\right)$ is a saddle point for \mathcal{L} as well.

