Exercise 1 (Penalization method) Let (X, | - |x) and (M, || - |la) two
Hilbert spaces. We denote by (-,-)x and (-,)as the scalar products associ-
ated to the norms ||-||x and ||-||ps. For f € X" and g € M', we are interested
in the solution of the following problem: search for (u,p) € X x M such
that for all (v,q) € X x M:

a(u,v) +b(v,p) = < f,v>,
(P){ bu,q) = <g,q>.

We assume that a(-,-) et b(-,-) are bilinear continuous forms on X x X and
X x M respectively. We assume there exists § > 0 such that:
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and that a(-,-) is a—coercive.
Let ¢(+,-) be a bilinear continuous and y—coercive form on M x M and
let C € L(M,M') be defined by
<Cp,qg>=c(p,q),  Vp,ge M.

We define analogously operator A and B associated to a(-,-) and b(-,-) re-
spectively.

1) Prove that problem (P) is well-posed.

Let V = Ker B. a is coercive on X x X, thus also on V x V. Moreover,
b satisfies the inf-sup condition because of Eq. (1). Therefore Problem (P)
is well-posed.

For 0 < € < 1, we consider the following problem: find (us,p:) € X x M
such that for all (v,q) € X x M,

(P){ a(ug,v) +b(v,pe) = < f,v>,
€ —ec(pe,q) + b(us,q) = <g,q>.

2) Prove that (P:) is equivalent to finding (u.,p:) € X x M such
that

1 1
a(ug,v) + - <C'Bu,Bv> = < fu> +g < Clg,Bv >,Vv € X2)
1
Pe = EC l(Bua - 9g). (3)

Vg e M,



—ec(pe,q) = < g,9> —b(uc,q)

1 1
—Cpe = —-g— —Bue
€ €
1 1
Pe = —EC_IQ—FEC_IBUE.

C is invertible since c is coercive on M x M with constant v > 0. Hence
b(v,pe) = < BTpea'U >

1 1
= ~<BT'C'Bu,v>-=-<BT'Clg,v>
€ €

1 1
= ~<C'Bu,Bv>-=-<C'9,Bv>
€ €

3) Prove that the problem of the previous question has a unique
solution. Is condition (1) necessary to prove that result?
Defining a(u,v) = a(u,v) + 2 < C~1Bu, Bv >, a is coercive:

1
ac(u,u) = a(u,u)+ - < C 'Bu, Bu >
€
1
= a(u,u)+-<q,Cq>
€

i
> afjullk + Lllalis
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where ¢ is defined by C'q = Bu.
Moreover, a, is continuous since,

1
ac(u,v) = a(u,v)+ - <gq,Bv>
€

1
< lallllullxllollx + =[Bllllallalvllx

1B

< £ 7
< llallllullx([vllx + " [[ullx[[v]lx
where the following inequality has been used
allis << Cq,q9 >=< Bu,q >< || B||lqllarlullx-

Moreover, the right hand side belongs to X’. From the Lax-Milgram the-
orem, this problem is well-posed. Note that the inf-sup condition is not
necessary here.



4) Prove the following inequalities:

I = sllr < L0 — i, Q
a C
e — 0. — ) < s””ﬁ””uus ~ullxlpl. 9
Starting from
Aue + BTpE = fa (6)
Bu. —eCp. = ¢

and
Au+BTp = f,
Bu = g,

A(u —u:) + BT (p — p:) = 0. using the inf-sup condition,

I1BY(p — pe)llxr = Bllp — pellm-

[A(w = ue)l|xr < [[AllfJu — usHX = llallllu — uellx-

Ip = pellmr < == Hu_ Ue||x -
Since A(ue —u) + BT (p. — p) :0,
< A(ue —u)yue —u> = <p—psBlu—u) >

= <p-—p.eCp: >
= <p—peC(p: —p) >+ <p—p.,eCp >

since < p — pe,eC(pe — p) >< 0,
< Alue —u)yue —u> < <p—p,eCp >
< ellellllp = pellalpll e
ellall]lc]
< ——— llue —ullx|lpllam
B
Thus,
€||a||||0||

5) Conclude that there exists 02 > 0 independent of ¢ such that

[ = uel[x <

lu = uellx + |[p = pellar < Coe ([ fllxr + llgllar) - (8)



We know that
a a 1 a
Ipllar < 12l (1 o el ”) lgllar + & (1 1 lel ”) 1£lx
« I} «
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Thus
= ellx < Crellfllx + lallar)
and
Ip— pellar < ”g”clewfux + lgle),
therefore,

lu — el x +1lp = pellvr < Coe (I fllxr + [lgllar) -

6) Let ¢ > 0. Consider the problem: find (u.,p.) € (H}(Q))? x
L3(9) such that:

9
P = —gdivug. 9)

{ —vAu. +Vp., = f,

Prove that this problem is well-posed and that, when ¢ goes to 0,
its solution goes to the solution of a problem to be determined.

Applying the result from question 1 with A = —vA, B = —div, C =1d

and g = 0, the problem is well-posed.
H} 2
According to question 5, u. —% u and p. L, p where (u,p) is solution

to the Stokes problem.

7) If a(-,-) and c(-,-) are symmetric, prove that (9) can be writ-
ten as a minimization problem. Discuss the advantages and the
drawbacks of the resolution of this problem.

From

1
—vAu, — EV divu, = f

J(u):;/\Vu|2+21€/\divu]2—/fu.

From the Lax-Milgram theorem,

J(ug) = inf J(u).

one can define

Resolution of Eq. (9) does not need the inf-sup condition. (On the other
hand, convergence of u. to u and p. to p need the inf-sup condition). The
presence of % deteriorates the condition number of the problem and may
result in the locking phenomena.



Exercise 2 (Augmented Lagrangian method) Let M € Nand N € N
with M < N. We denote by | - | the Euclidian norm in RM or RY and
(+,-) the associated scalar product. Let A be a N x N symmetric positive
definite matrix and b € RY. Let B a full-rank matrix M x N. Define £
from RY x RM on R by:

L(v,q) = J(v) + (g, Bv)

v) = 2(Av,v) — (b,v). Lets denote by (u, p) a saddle-point of L: for
all (v,q) € RY x RM: L(u,q) < L(u,p) < L(v,p). Let 7 > 0, lets define

T
L (v,q) = L(v,q) + 5\30\2-

We define the sequences (u,)nen and (p)nen as follows. Let pg € RM.
For n > 0, assuming p, is known, we compute u, € RY solution to

cr(unapn) < Er(vapn)avv € RNa (1())

then, we set
DPntl = Pn + pnBuy, (11)

where p,, is a given positive number. We assume that Vn,0 < a < p, < 27,
where « is given. We set du,, = v — u,, and dp, = p — pn.
1) Show that (10) is equivalent to

(A+rBTB)u, + BTp, =b

£1(v,pn) = £(v,p0) + L[ Bof’ = £(Av,0) — (b,0) + (pn, Bv) + 5| B,
Let € > 0.
£ (urben )=o) = ¢ (A 0) 4 50, 0) = (0.0) + (. B) + (57 Bo,w)).
Since A is symmetric
L, (v+ew,pn)— Ly (v,p,) = € ((Av,w) — (b,w) + (BT pn,w) + r(BT Bv,w)).
Thus

ﬁ;‘(vapn)'w = (AU,w) - (baw) + (BTpna w) + T(BTB’U,U))



and if u,, is a global minimum in the open set RY, necessarily
L (U, pp)w =0, Yw e RY & Au, — b+ BT p, + rBT Bu,.
2) Show that

’(spn‘Q - ‘5pn+1‘2 = 2,0n(A5Una 5un) + pn(27" - pn)‘BéunF

|5pn|2 - |5pn+1|2 = ’(Spn‘g - |5pn - pnBun|2
= 2(pnBun, dpn) — :072z|Bun|2

Since Bu = 0,
‘5pn‘2 - |5pn+1|2 = _2(pnB(5Un75pn) - p%’BunP
Moreover,
Au+ BTp=1b

and

Au,, + B"p,, = b — rBT Bu,,.
Therefore,

BT6p,, = —Adu,, + rB' Bu,
and
160n)? — [0Pns1|> = —2(pndun, —Adu, + BT Bu,) — p2|Bu,|?

= 2pp(Adtn, 6tp) — 2pnr(8tn, BT (—Béuy,)) — pn|Bouy, |
= 20, (Abuy, Suy) + pn(2r — pr)| Boun,|?

3) Show that dp, converges. Deduce that u, — u and p, — p as
n — oo.
Since 2r—p,, > 0, and A is symmetric positive definite, [0p,|?—[0pn+1]? <
0 and thus the sequence |6p,|? is decreasing and lower bounded by zero.
Therefore it converges.
Since

| 2

(A+rBTB)éu, = —BTép,

and the matrix (A + rBT B) is symmetric definite positive (SPD), thus in-
vertible, du,, converges as well.



Since 2p,(AdUn, 0un) + pn(2r — pn)|Béuy|? converges to zero and is
the sum of two positive terms, each term converges to zero. In particu-
lar [2pp(Adup, duy)| > [20(Adup, duy,)| > 0 converges to zero and so does
ou, since A is SPD. Thus u, — u.

Going back to

BT6p, = —(A +rBT B)ju,

since B is of full-rank M, BT € RN*M ig injective and dp, — 0, thus

Pn — P
4) Show that any saddle point of £ is a saddle point of £, and
conversely.

e Let (u,p) be a saddle point of £. Thus,
Au+ BTp=b, Bu=0.
Letting (v,q) € RY x RM|
Lr(u,q) = L(u, q) < L(u,p) = Lr(u,p) < L(v,p) < Ly(v,p).
(u,p) is a saddle point of £,.

e Let (ur,p,) be a saddle point of £,. We showed that
(A+rBTB)u, =b— BTp,.
Since Ly (ur, q) < Ly (ur,pr), Vg€ RM,
(¢, Bu,) < (py, Bu,), YqeRM.

Necessarily, choosing ¢ # 0 and —g shows that Bu, = 0.

Then Au, = b — BTp,. These two equalities show that (u,,p,) is a
saddle point for £ as well.



