
CME 305: Discrete Mathematics and Algorithms
Instructor: Professor Aaron Sidford (sidford@stanford.edu)

January 16, 2018

Lecture 3 - Running Times and Spanning Trees1

There are two main topics we cover in this lecture. First, we perform a slightly more formal analysis of

the algorithms we provided last week and discuss how they yield provably e�cient algorithms for all the

problems we have considered so far: global minimum cut, computing connected components, bipartiteness,

articulation points, etc. Second, we introduce a new problem, the minimum spanning tree problem and show

how to solve it in nearly linear time. We show that the algorithm here and its analysis are actually much

more general.

1 Running Times

In the last two lectures we have provided algorithms for e�ciently solving several natural graph optimization

problems including computing the global minimum cut, computing connected components, computing ar-

ticulation points, etc. However, in these lectures we were fairly informal with what we meant by e�ciently.

We discussed how for these problems there were trivial brute force algorithms and how our algorithms were

more e�cient, but we were not very formal in our analysis. Here we discuss a little bit how we will measure

algorithm e�ciency more formally.

As has been standard in the analysis of algorithms for decades we will focus on the asymptotic analysis

of algorithms and our analysis will typically be worst case. By asymptotic analysis, we mean that we will

be primarily concerned about how the running times of our algorithms scale as the size of the input grows

and be less concerned with constant factors that may arise from minor algorithmic di�erence. By worst

case, we mean that we will typically focus on bounding the running times of our algorithms over all inputs

that we could possibly receive. Intuitively, we do not want our algorithmic analysis too tailored to the

particular computational model or architecture we are working with or assumptions we make about the

input. In short we want our analysis to ignore constant factors in the running time that might be tuned to

particular architectural details or minor code optimization and we want our algorithm to always run fast, for

all input. This is not the only way to analyze algorithms, but it is a classic and important one that has been

instrumental in how we view algorithms and optimization problems. There is important work that relaxes

these assumptions, but they will not occur much in this course.

Now, in this course when we analyze algorithms we will try to avoid being too pedandic or making too

many assumptions about our precise computational model as this is not the primary emphasis of the course.

However, we will need to make some assumptions and introduce some standard conventions so that we can

talk about and compare algorithm running times. This is something we expect you to have some competence

in by the completion of the course. Here, we brie�y review our computational model and how we will analyze

algorithms. If you haven't seen this before or are not very comfortable with this computational model, at

the minimum please read the suggested reading on this subject immediately. If you would like further help,

the TAs and I will be happy to discuss this with you and there are a number of additional resources we can

and will point you too.

Now, the main mathematical tool we use to analyze running times is something you likely have heard of

known as �big-O� notation. By itself, �big-O� notation is simply a mathematical term used to study the

asymptotics of functions.

1These lecture notes are a work in progress and there may be typos, awkward language, omitted proof details, etc. Moreover,

content from lectures might be missing. These notes are intended to converge to a polished superset of the material covered in

class so if you would like anything clari�ed, please do not hesitate to post to Piazza and ask.

CME 305: Discrete Mathematics and Algorithms - Lecture 3 2

De�nition 1 (Big-O Notation). For functions f, g : Z>0 → Z>0 we say that f = O(g), pronounced �f is

big-O of g� if for some su�ciently large value n0 and some constant c ≥ 0 we have f(n) ≤ c · g(n) for all

n ≥ n0. Similarly we say f = Ω(g), pronounced �f is omega of g,� if for some su�ciently large value n0 and

some constant c ≥ 0 we have f(n) ≥ c · g(n) for all n ≥ n0. Lastly, we say �f = Θ(g), pronounced �f is theta

of g� if f = O(g) and f = Ω(g).

Note that we may use the same terminology for functions that take multiple non-negative integers as input

with the interpretation that similar bounds should hold for su�ciently large input, i.e. if we have f, g :

Z>0 ×Z>0 → Z>0 then we write f = O(g) if and only if for some n0, c ≥ 0 we have f(n,m) ≤ c · g(n,m) for

all n ≥ n0 and m ≥ n0. This notation is relevant when we talk about problems parameterized by multiple

values, e.g. graphs.

The appeal of this notation is that it provides a natural way to ignore constants and simply focus on the

asymptotics or growth rate of functions. Whenever we talk about running time, we will always use big-O

notation as we wish to avoid specifying the actual units by which we measure time or the cost of an operation

as these may be extremely dependent on the architecture.. We may also use big-O notation to talk about

things other than running time as often we just care about asymptotics and the freedom to drop constants

is quite useful.

With this notation in hand, I can describe the computational model we will use for the bulk of the class. We

will analyze algorithms primarily in the standard RAM model of computation. We assume that the input

and the state of the algorithm is written down as integers in some long arrary or vector of integers we call.

We then assume that can perform basic operations, like reading from a location in memory, writing to a

location of memory, performing arithmetic operations on two memory locations, etc. all in constant, i.e.

O(1) time. We then think of our running times as actual functions of the input size, i.e. for graphs with

m-edges and n-nodes we write our running times as T (m,n) and bound them with big-O notation imagining

that both m or n are growing to in�nite.

It is worth noting that in general one needs to be a little careful with these de�nitions. If we are not careful

about how large we let the integers be or how many memory cells get we might get incredibly impractical

algorithms. It is known that without these sorts of restrictions intractable problems may look easily solvable.

These issues won't generally come up in the class and they are avoidable by making restrictions on each, but

we won't really discuss this in the class.

Before analyzing the algorithms we have seen so far, there is one more point worth making. What do we

actually mean when we say solve a problem e�ciently? As we have discussed, when our input is of size n

for a combinatorial problem it is often easy to solve the problem in time that is almost exponential in the

size of the input, i.e. 2O(n) time. However, as the input grows the running time of such a procedure can

get much worse. The running time we will often �rst aim for to show that we can do much better than

brute force search is to obtain a polynomial running time, i.e. a running time of O(nc) for a constant c.

This is a classic notion of a problem being e�cient and it has been extremely useful historically. Obtaining

such a running time corresponds to having a much better structural understanding of a problem than brute

force search and implies that if the input size doubles for large input, the running time changes by at most

multiplicative constant. Also, obtaining such a running time, has often (but not always) been suggestive of

obtaining practical and fairly fast algorithms both in theory and in practice.

In this class we will often consider this classic notion of e�ciency and strive to obtain polynomial time

algorithms. However, we will often attempt to obtain even faster running times. A holy grail for many

combinatorial optimization problems is to obtain linear time algorithms, that is algorithms with running

time O(n) where the input size n. Such a running time implies that the time it takes to solve the problem

is not too much more than the time it takes to read the input. Since for many problems it is easy to show

that reading the input is necessary, such a running time is optimal. Often we may also attempt to obtain

CME 305: Discrete Mathematics and Algorithms - Lecture 3 3

running times which are close to this bound, or run in nearly linear time, i.e. O(n logc n) for some absolute

constant c. Here these running times di�er from linear only by a term that grows slowly asymptotically.

There is active research and important open problems in getting all sorts of running times, i.e. occasionally

solving problems in sublinear time (which is asymptotically less than the input size) or quasipolynomial time

2O(logc n) but these will not appear too much in this course.

2 Graph Representation

Now before we analyze the graph algorithms we have seen so far, we should discuss a little bit how our graph

is represented. Depending on how a graph is speci�ed we may get di�erent running times. There are two

natural ways that a graph could be speci�ed.

The �rst is the one that we will use by default and that is the adjacency list representation of a graph. In

this representation, to specify a graph G = (V,E) with n = |V | and m = |E|, we assume that we have the

nodes of the graph v1, ..., vn given in a list where we start with the memory location of v1 and its name

together with a pointer to the next node v2, etc. Further, we assume that at each node, we have a list of its

out-edges, i.e. for node u we have a list of (u, v) for all (u, v) ∈ E. If the graph is weighted we further assume

that for each edge we have a pointer to its weight. Note that storing this data structure takes O(n + m)

space and we can quickly enumerate the edges of a vertex. Note that if we would rather have the in-edge, i.e.

who points to a node, we can make this data structure easily in O(n + m) time simply by iterating over the

nodes and edges and adding them to the appropriate lists. Consequently, we won't draw a big distinction

between keeping track of incoming or outcoming edges.Note that the space taken for this representation is

O(m + n) and thus for these problems m + n is the input size.

Another standard representation of graphs as the input that we will work with a little less is known as

the adjacency matrix representation of a graph. Here the graph is simply stored as a matrix A ∈ R
n×n

where Ai,j = 1 if (i, j) ∈ E and 0 otherwise. One advantage of this representation over the adjacency list

representation is that checking if (i, j) ∈ E can easily be done in O(1) time (whereas the time for such a

query in adjacency lists is a bit more complicated). However, storing it takes O(n2) space which can be

much larger if the graph G is sparse, meaning (informally) that n2 is much larger than m. OWe will discuss

the adjacency matrix further in the class, but we will typically assume that our input graph is speci�ed in

adjacency list.

3 Reachability Running Times

Now that we have our basic tools for analyzing algorithms and representing graphs, lets analyze the running

time of breadth �rst search (BFS) and depth �rst search (DFS) introduced in the last lecture. Rather than

going through the code for each, below we provide the following meta algorithm for computing a reachability

tree from a given start node. Recall that a reachability tree for s is a subgraph where for every node reachable

in the graph from s there is a unique path from s to that node.

Now this algorithm is slightly underspeci�ed in that we have not speci�ed which edge (u, v) is removed from

F . Depending which edge is removed we get di�erent algorithm, e.g. BFS or DFS. However, before we

discuss this, we �rst quickly prove that the algorithm always returns a reachability tree.

Lemma 2. The subgraph T returned by the above meta-algorithm is a reachability tree from s.

Proof. First, we claim that at the start of each iteration of the while loop T is a reachability tree for the

CME 305: Discrete Mathematics and Algorithms - Lecture 3 4

Algorithm 1 Graph Exploration Meta Algorithm

Input: graph G = (V,E) and start vertex s ∈ V

Mark all vertices v ∈ V as unexplored and initialize T = ∅
Let F = {(u, v) ∈ E |u = s} and mark s as explored

while F 6= ∅ do
Remove edge (u, v) from F

if v is unexplored then

Add (u, v) to T

Mark v as explored

Add (v, w) to F for all (v, w) ∈ E

end if

end while

Return the reachability tree T

subgraph induced by the vertices marked as explored. This can be improved by induction. The claim starts

as trivially true when T = ∅. Furthermore, if it is true at the start of the while loop we either leave the tree

unchanged or add a single edge from the vertices marked as explored to a new vertex (that that we then

mark as explored) the claim stays true.

With this claim established, it only remains to show that set of vertices marked as explored, denoted

S, contains all vertices reachable from s, denoted R, at the termination of the algorithm. Proceed by

contradiction and suppose there is a vertex v ∈ R \ S. Since v ∈ R there is a s to v path and this path

must have some edge (a, b) ∈ E with a ∈ S and b 6/∈ S as s ∈ S and v /∈ S. However, when we marked a as

explored we would have added (a, b) to F and therefore would have eventually marked b as explored adding

b to S, contradicting to the de�nition of S.

Now let us analyze the running time of the graph exploration algorithm. Marking the vertices explored

or unexplored takes O(n) time in total as there are n vertices and each is marked as explored once and

unexplored once. The number of iterations of the while loop is at most 2m as every undirected edge is added

to F at most twice (once if the edge is directed). Furthermore, we only add at most n− 1 edges to T so that

takes O(n) time. Consequently we see that our running time is O(n + m) plus the time it takes to perform

the following operations on a set F O(m) times, (1) check if F is empty, (2) add an element to F , (3) remove

an element from F . Now there are many data strutures that can implement each of these operations in O(1)

time each. I will not spend too much time in these notes discussing how to implement such data structures,

but I will point to references for further information about them. With this, we see that we can compute a

reachability tree in O(m+n) time and it is not hard to see that if we apply it repeatedly for di�erent vertices,

removing all vertices and edges they can reach, this will ultimately compute all the connected components

of an undirected graph in O(m + n) time. We simply need to show how to use this algorithm to implement

BFS and DFS.

Suppose that F is implemented in what is called FIFO, �rst-in �rst-out, this means that the element removed

from F is the element that was added earliest. In this case, we see that the reachability algorithm will �rst

explore vertices reachble from s with one edge, then the vertices reachable from those in one step, etc.

Consequently, this algorithm will be precisely BFS. Such a FIFO F can be implement so that all operations

take O(1) time and such a data-structure is known as a queue. Thus, BFS can be implement in linear,

O(m + n), time.

On the other hand suppose that F is implemented in what is called LIFO, last-in �rst-out, this means that

the element removed from F is the element that was added most recently. In this case, we see that the

reachability algorithm will follow an edge to an unexplored vertex, follow an edge from that vertex to an

CME 305: Discrete Mathematics and Algorithms - Lecture 3 5

unexplored, etc. backtracking only when no edge would bring the algorithm to an unexplored vertex.

Consequently, this algorithm will be precisely DFS. Such a LIFO F can be implement so that all operations

take O(1) time and such a data-structure is known as a stack. Thus, DFS can be implement in linear,

O(m + n), time.

4 Strongly Connected Component / Articulation Point Algorithm

... coming soon ... (we touched on this brie�y in lecture #2 and it will be part of these notes shortly) ...

5 Minimum Cut Running Time

With our algorithm analysis conventions in hand, let us take a closer look at the running time for Karger's

algorithm and discuss how to improve it. Recall that the trivial, brute force running time for min-cut is

O(2nm) which is achieved by looking at all 2n − 2 possible cuts, computing each of there sizes, which takes

O(m) time for each, and then outputting the best cut.

5.1 Karger’s Algorithm

Recall Karger's algorithm is as follows:

Algorithm 2 Karger's randomized global min-cut

repeat

Remove all self-loops

Choose an edge {u, v} uniformly at random from E.

Contract vertices u and v

until G has only 2 vertices.

Report the corresponding cut in the original graph

We assume that we can sample a random edge from a list in O(1) time (this isn't too hard to make happen).

With this each contraction can be implemented to takes O(1) time. When a contraction happens we can

simply enumerate the edges edges and renumber everything to encode the contraction, this takes at most

O(m) time. We then contract O(n) times for one execution of Karger, causing Karger to run in O(mn) time.

Now, as we discussed before Karger's algorithm succeeds in �nding a min-cut with probability ≥ 1
O(n2) .

Thus, if we run Karger t times and return the smallest cut found, this will takes us O(tmn) time for the t

executions of Karger, plus O(tm) time to �nd the best cut, causing a total running time of O(tmn). Thus

as we discussed made the success probability

1−
(

1− 1

O(n2)

)t

≥ 1− exp

(
− t

O(n2)

)
and therefore if we picked t = O(n2 log n) then we obtain a success probability of 1 − 1

nc where c is any

constant we wish, as it a�ects the running time only through the constant in the big-O. This is known as

succeeding with high probability (whp) in n and thus we have just shown that we can compute global min

cut whp in time O(mn3 log n). This is a polynomial running time much better than the trival brute force.

Note that we can improve the implementation of Karger a little bit, by storing multi-edges just as weighted

edges and noting that picking a random edge in the graph is same as picking a random vertex with probability

CME 305: Discrete Mathematics and Algorithms - Lecture 3 6

proportional to the degree of that vertex (the total weight of the edges incident to it), and then picking a

random edge incident to that vertex. Consequently, with O(m) preprocessing we can compute the degrees

of all the vertices and then implement a contraction in O(n) rather than O(m) time simply by sampling

the right vertex in O(n) time, sampling the right edge in O(n) time and then contracting and updating the

information to do this again in O(n) time. Consequently, Karger can be implemented in O(m + n2) time,

which I will just write as O(n2) (under the implicit assumption that the original possibly multi-graph is

given as a weighted graph). Thus, Karger's algorithm appropriately used gives O(n4 log n) time algorithm.

5.2 Improving the Running Time (Karger Stein)

One way to improve the running time is a beautiful idea of Karger and Stein. We sketch this in the remainder

of this section. The idea is that we if we contract only some of the edges of the graph (rather than all), we

can still contract many edges while maintaining that that the success probability is still fairly high. Suppose

we contract until the number of vertices in the graph is some nnew, then failure probability is(
1− 2

n

)(
1− 2

n− 1

)
...

(
1− 2

nnew + 1

)
=

(
n− 2

n

)(
n− 3

n− 1

)
...

(
nnew − 1

nnew + 1

)
=

nnew(nnew − 1)

n(n− 1)
≈ n2

new

n2
.

Consequently if we contract until nnew ≈ n√
2
then we actually succeeded in preserving a mincut with

probability 1
2 . How can we then improve our success probability? One natural idea would be instead

of running the same procedure on the resulting graph once, we can run it twice. Since these trials are

independent this will improve our success probability. If we use this procedure recursively, it could improve

performance by a lot. This motivates the following algorithm.

Algorithm 3 Karger and Stein' Randomized Global Min-cut

De�ne solve(G = (V,E)) as follows.

Let n = |V | and if n = O(1) compute the global min-cut and return its corresponding cut in original

graph.

Note: any algorithm work for above step, even brute force, since the graph is constant size.

while |V | > n√
2
do

Remove all self-loops

Choose an edge {u, v} uniformly at random from E.

Contract vertices u and v

end while

Return the corresponding cut in the original graph for the smaller cut size of solve(G)and solve(G)

First, let's roughly compute the success probability the entire procedure succeeds? Let pk denote the probably

of successfully outputting a minimum cut when calling solve(G = (V,E)) twice and outputting the smaller

cut, on a graph where we will need to recurse k times before the graph is constant size. Clearly, p0 = 1

as discussed. To bound pk note that contracting until the number of vertices decreases by 1/
√

2 and then

calling the procedure twice in each invocation of solve(G = (V,E)) will succeed with probability at least
1
2pk−1. Since we do this twice independently we will fail only if they both fail which happens with probability

pk ≥ 1−
(

1− 1

2
pk−1

)2

= pk−1 −
1

4
p2k−1 = pk−1

(
1− pk−1

4

)
.

Now, since pk−1 ∈ [0, 1] we have that(
1− pk−1

4

)(
1 +

pk−1
2

)
= 1 +

1

4
pk−1 −

1

8
p2k−1 ≥ 1

CME 305: Discrete Mathematics and Algorithms - Lecture 3 7

and therefore
1

pk
≤ 1

pk−1
(
1− pk−1

4

) ≤ 1 + pk−1

2

pk−1
=

1

pk−1
+

1

2
.

Consequently, 1
pk
≤ k and pk ≥ 1

k . Since we recurse log√2(n) = O(log n) times this means the overall success

probability is 1
O(logn) and therefore, we succeed with high probability if we run the procedure O(log2 n)

times!

What is the overall running time of the procedure? Note, that as we discussed earlier the contractions can

be implemented in O(n2) time and therefore the running time of this procedure on a n-vertex graph is T (n)

where T (n) obeys

T (n) = O(n2) + 2 · T (n/
√

2) .

There are formulas for solving these recursions and the well known �master formula� yields that T (n) =

O(n2 log n). Putting everything together yields that we can compute a minimum cut with high probability

in O(n2 log3 n) time. Note this is a substantial improvement. When the graph is dense, i.e. m = Ω(n2), this

running time is nearly linear!

5.3 State-of-the-art

Now a natural question is can we do even better? For example can we get a linear running time even

when the graph is not dense, i.e. m is much less than n2? Note that the algorithm would have to change

substantially to achieve this. By similar arguments to earlier we see that this procedure will output every

single global minimum cut. There are Ω(n2) of them so unless we do something to represent them better

this will trivially take us Ω(n2) time to get. There was a breakthrough result of Karger that got around this

bottleneck and achieved this running time, but we will likely not get to discuss it further in this course. If

you would like further information about it, let me know.

6 The Minimum Spanning Tree Problem

We conclude this lecture by taking a look at a new problem known as the minimum spanning tree (MST)

problem.

De�nition 3. Given an undirected graph G = (V,E) and weights w ∈ RE a minimum spanning tree (MST)

is a spanning tree T = (V,ET) of G with
∑

e∈ET
we minimized. The MST problem asks to e�ciently

compute a MST.

This is an extremely natural and well studied problem in combinatorial optimization. As we have shown, a

spanning tree consists of the minimum number of edges that one could hope to keep and maintain that a

graph is connected and therefore this problem asks for the cheapest such certi�cate. One might also imagine

a settings where nodes are things that need to be connected (e.g. computers) and the edges correspond to

links we could possibly purchase to compute them (at some known cost), in this context the MST problem

asks for the minimum cost we need to pay to connect the entire network. The study of this problem has also

lead to numerous algorithmic insights and as we will discuss next lecture the MST problem constitutes one

of the simplest where natural algorithmic paradigms, like greedy, work.

So how do we solve the MST problem? As we just suggested, one of the most natural algorithms one might

thing of is a greedy algorithm: start with an empty set and repeatedly add the minimum weight edge that

doesn't induce a cycle until the graph is connected (i.e. we have a tree). This algorithm in the context of

MST is known as Kruskal's algorithm:

CME 305: Discrete Mathematics and Algorithms - Lecture 3 8

Algorithm 4 Greedy MST Algorithm (Kruskal's Algorithm)

Input: graph G = (V,E) and weights w ∈ RE

Let T := ∅
while |T | < n− 1 do

add to T the smallest weight edge in G that does not create a cycle in T

end while

Return T

This algorithm is greedy as it greedily repeatedly adds the best edge it can. The algorithm never looks back

and removes an edge; once it determines which edge to add it is �nal. Before we prove this algorithm works,

let's show how it can be implemented e�ciently, i.e. in nearly linear time. Consider the following:

Algorithm 5 Greedy MST Algorithm Implementation

Input: graph G = (V,E) and weights w ∈ RE

Set T = ∅
Set components Si = {vi} for all i ∈ [n]

Set pointers C[vi] = Si

Sort edges E = {e1, ..., em} so that we1 ≤ we2 ≤ ... ≤ wem .

for i = 1 to m do

if If ei = {ui, vi} and C[ui] 6= C[vi] then

Add ei to T

Swap ui and vi so that |C[ui]| ≤ |C[vi]|
C[vi] = C[vi] ∪ C[ui]

Set C[u] = C[vi] for all u ∈ C[ui]

end if

end for

Return T

This procedure simply assign each vertex vi to a connected component C[vi] initialized to be {vi}, as the
connected components are just the vertices to start. Then the edges are sorted and considered in increasing

order of weight. Whenever an edge is encountered that is between two di�erent connected components (

C[ui] 6= C[vi]) the smaller connected component is then merged into the larger connected component and

the edge {ui, vi} is added to the tree. Since edges do not form cycles if and only if they are between connected

components this algorithm works the same as Kruskal's algorithm To bound the running time, note that

sorting can be performed in O(m logm) time (which can be made O(m+m log n) = O(m log n) time simply

by taking the minimum weight edge of any multi-edge and then sorting the remaining at most n2 edges),

and then the each of the operations can be performed in O(1) so long as the sets are stored in linked lists.

The loop over the edges proceeds O(m) times and thus the running time is simply O(m log n) plus the time

needed to do all the changing of C[u] = C[vi]. However, a vertex is set to a new connected component in

this way if and only if the connected component it is in at least doubles in size (as we always merge the

smaller component into the larger). Consequently this step can only happen O(log n) times per vertex and

thus O(n log n) time in total. Consequently, the total running time is O(m log n).

Note that throughout we assumed that m ≥ n as we were assuming there is a spanning tree and the graph is

connected, otherwise there would be an additive n in the running time. Also note that there are much faster

procedures to implement this algorithm (ignoring the time to sort), in particular a data structure known as

union-�nd can be used to almost remove the log n factor.

To show that this algorithm is correct we provide a fairly general lemma about the structure of edges in a

MST.

CME 305: Discrete Mathematics and Algorithms - Lecture 3 9

Lemma 4. If for some non-trivial S ⊆ V and e ∈ ∂(S), where ∂(S) = {{i, j} ∈ E|i ∈ S, j /∈ S}, we have

we < we′ for all e′ 6= e in ∂(S) then e is in every MST.

Proof. Let e = {i, j} for i ∈ S and j /∈ S and proceed by contradiction supposing that T = (V,ET) is a MST

not containing e. Then there is path connecting i to j in T and one of these edges e′ must also be in ∂(S)

as i ∈ S and j /∈ S. However, if we remove edge e′ from the tree and add edge e then the total weight of

the tree decreases as we < we′ and the graph must still be a tree since everything that was connected before

is still connected (as there is a path between the endpoints of e′ in the new graph. Consequently, T is not

minimum weight and not the MST.

Now, when we run Kruskal's algorithm every time we add an edge it is a minimum in the cut induced by the

connected component it connects. Thus if we just de�ne the weight of this edge to be in�nitesimally smaller

then the other edges of the same weight not included but larger than those included we can apply the above

lemma and have that the resulting tree is a MST. Note that this lemma can be used to prove correctness of

many possible MST algorithms. For example, if we took the graph exploration meta algorithm and deleted

from F the minimum weight edge in F (this can be done in O(log n) time using a data structure known as

a heap or priority queue) then this algorithm (known as Prim's algorithm) also yields a MST. In the next

lecture we will talk a little more broadly about when such algorithms work from the perspective of matroids.

	Running Times
	Graph Representation
	Reachability Running Times
	Strongly Connected Component / Articulation Point Algorithm
	Minimum Cut Running Time
	Karger's Algorithm
	Improving the Running Time (Karger Stein)
	State-of-the-art

	The Minimum Spanning Tree Problem

