
CME 305: Discrete Mathematics and Algorithms
Instructor: Professor Aaron Sidford (sidford@stanford.edu)

February 29, 2018

Lecture 15 - NP Completeness1

In the last lecture we discussed how to provide evidence that problems are computationally di�cult. We

introduced the notions of polynomial time reductions and NP-completeness and sketched the proof that a

particular problem, Circuit-SAT, is NP-complete. We mentioned that one of the virtues of �nding a NP-

complete problem is that given one, the recipe to prove that other problems are NP-complete is quite simple,

reduce an NP-complete problem to it and show it is in NP, and that we can show that many natural problems

are incomplete.

In this lecture we demonstrate this formally in several cases by showing that multiple problems are NP-

complete. There has been extensive work on showing di�erent problems are NP-complete and for more

complete lists of NP-complete problems the curious reader should look at the suggested reading. The point

of this lecture is to give a sense of how these reductions to prove problems are NP-complete work. The main

theme in these reductions is that of coming up with clever gadgets to encode one NP-complete problem in

another.

1 Recap

We begin with a quick recap of the fundamental principles we will use throughout this lecture. Recall that

our main tool to show that problems were equivalent was through the notion of polynomial time reducibility

de�ned below

De�nition 1 (Polynomial Time Reducibility). We say problem X is polynomial time reducible to problem

Y , denoted X ≤p Y if and only if there exists an algorithm for solving X in in polynomial time plus the

time needed to solve Y a polynomial number of times on polynomially sized input. We de�ne X =p Y to

denote the condition that X ≤p Y and Y ≤p X.

We said we would focus on decision problems, i.e. problems where the answer is either �yes� or �no,� and

noted that such problems can be encoded simply as the X the subset of input binary strings which encode

�yes� instances. For decision problems we formally de�ned the classes of P , NP , and NP -complete as follows

De�nition 2 (P). A decision problem X is polynomial time solvable, denoted X ∈ P , if and only if there

is an algorithm that given any binary string s can compute or decide if s ∈ X in time polynomial in |s|.

De�nition 3 (NP). A decision problem X is solvable in nondeterministic polynomial time, denoted X ∈
NP , if and only if there is a polynomial time veri�er for X, that is there is an algorithm B that given binary

strings s and t output B(s, t) ∈ {”yes”, ”no”} in time polynomial in |s|+ |t| with the property that if binary

string s /∈ X then B(s, t) = ”no” for all t and if s ∈ X then there exists t with |t| = O(poly(|s|)) such that

B(s, t) = ”yes”.

De�nition 4 (NP -Hardness and Completeness). A decision problem X is said to be NP -hard if for all

Y ∈ NP it is the case that Y ≤p X. If additional X ∈ NP then X is said to be NP -complete.

One of the key motivations of NP -completeness is the following lemma which provides an easy recipe for

proving a problem is NP -complete.

1These lecture notes are a work in progress and there may be typos, awkward language, omitted proof details, etc. Moreover,

content from lectures might be missing. These notes are intended to converge to a polished superset of the material covered in

class so if you would like anything clari�ed, please do not hesitate to post to Piazza and ask.

CME 305: Discrete Mathematics and Algorithms - Lecture 15 2

Lemma 5. If X is NP -complete and X ≤p Y for Y ∈ NP then Y is NP -complete as well.

Finally, we showed that the Circuit-SAT problem de�ned as follows is NP -complete.

De�nition 6 (Boolean Circuit). A Boolean circuit is de�ned by Boolean variables x1, ..., xk and a connected

tree with edges oriented from the leaves towards a root with the following properties:

• Each leaf node is labeled with one of xi, T for �true,� or F for �false�

• Each internal node is labeled with one of ∨ for Boolean �or�, ∧ for Boolean �and,� or ¬ for Boolean

�not�

• Each ∨ and ∧ node has in-degree 2 and each ¬ node has in-degree 1.

De�nition 7 (Circuit-SAT). The circuit satis�ability problem, or circuit-SAT, is the problem of given a

Boolean circuit determining if their is an assignment of the variables that causes the circuit to evaluate to

true.

2 3-SAT is NP -Complete

As we have discussed, the primary goal of this lecture is to show how to use the fact that Circuit-SAT is

NP -complete to prove that other problems are NP -complete as well. The class of NP -complete problems is

impressively broad and their more reductions and useful gadgets for these reductions to prove that problems

are NP -complete then we possibly have time to cover in this course. Instead, in the remainder of this lecture

we provide a few canonical examples of NP -complete problems and prove that they are NP -complete.

Now, while the proof that Circuit-SAT is NP -complete is impressive, the de�nition of Circuit-SAT as a

problem is somewhat clunky and therefore if we wish to have a simple problem to reduce from in showing

that new problems are NP -complete, then Circuit-SAT is perhaps not the nicest choice. However, Circuit-

SAT is simply the problem of checking if an arbitrary Boolean formula is satis�able. There are nicer canonical

forms for Boolean formulas that are in some sense equivalent and therefore we can use these to obtain slightly

simpler NP -hard problems.

We begin by de�ning the conjunctive normal form (CNF) of a Boolean formula.

De�nition 8 (Conjunctive Normal Form (CNF)). A Boolean formula F of the variables x1, ..., xn is said to

be in conjunctive normal form (CNF), if there are clauses C1, ..., Ck where each clause Ci is a set of literals

l
(i)
1 , ..., l

(i)
jk

where each l
(i)
j ∈ {x1, x2, ..., xn,¬x1,¬x2, ...,¬xn} and

F (x1, ..., xn) = ∧i∈[k]
(
∨j∈[jk]l

(i)
j

)
.

In other words a Boolean formula is in conjunctive normal form if it is the and of a variety of clauses where

a clause is the or of a number of literals, which are simply Boolean variables or there negation. For example,

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x4)

is a Boolean formula in conjunctive normal form. Note that a CNF formula is true if and only if for every

clause at least one of the literals is true and a CNF formula is satis�able if and only if there is an assignment

of variables to make this happen.

With this de�nition in hand we de�ne the SAT problem as follows.

CME 305: Discrete Mathematics and Algorithms - Lecture 15 3

De�nition 9 (SAT). The SAT problem is the problem of given a CNF formula deciding if there exists a

assignment of variables to true of false such that the formula evaluates to true, i.e. whether the CNF formula

is satis�able.

Now it is well known that every Boolean formula can be expressed equivalently in CNF and we essentially

reprove this fact to prove that SAT is also NP -complete.

Lemma 10. SAT is NP -complete.

Proof. As usual with our proofs of NP -completeness we �rst need to argue that SAT ∈ NP . However, also

as usual this proof is easy. Given an assignment of variables, we can easily evaluate a CNF formula in time

linear in the size of the SAT formula and therefore this problem as a polynomial time veri�er.

Now, also as usual the more di�cult part of the proof is proving that SAT is NP -hard. However, since we

now have a NP-complete problem, i.e. Circuit-SAT. To prove this we simply need to show that Circuit-SAT

≤p SAT. Consequently, suppose we have an instance of circuit SAT. Let x1, ..., xn be the variables and let

v1, ..., vn be the nodes of the tree and let r be the root of the tree. We will overload notation slightly and

create a boolean formula on the variables x1, ..., xn, v1, ..., vn plus to additional variables t and f such that

this formula is satis�able if and only if the circuit is satis�able.

Now to create this formula we will exploit the nice property of CNF formulas that every clause needs to

evaluate true for the formula to evaluate to true. Thus we can think of adding clauses as adding constraints

on variables that need to be met. Thus we simply need to add constraints so that the vi correspond to the

output of that node in the tree and such that r outputs true. Additionally we add constraints so that t = T

and f = F as we may have these as input to certain vi. We show how to add clauses corresponding to each

of these as follows.

• True and False: we add the clauses t and the clause ¬t. Direct inspection reveals these clauses are

true if and only if t = T and f = F .

• The Root Outputs true: we add the clause r. Direct inspection reveals this clauses is true if and

only if the root node outputs true.

• Negation: Suppose we want vi = ¬u for some variable u. In this case we add (vi ∨ u) ∧ (¬vi ∨ ¬u).

Note that if u = F then for vi ∨ u we must have vi = T and we see that these clauses are true if and

only if vi = T . Similarly if u = T then the clauses are true if and only if vi = F . Combining we see

that these two clauses are true if and only if vi = ¬u.

• And: Suppose we want vi = u1 ∧ u2 for some variables u1 and u2. In this case we add (¬vi ∨ u1) ∧
(¬vi ∨ u2)∧ (vi ∨¬u1 ∨¬u2). Suppose u1 is false, in this case for the �rst clause to be true we need vi
to be true and we see that when this happens the formula is true. Similarly, we see that if u2 is false

then the clauses evaluate to true if and only if vi is false. Finally, if both u1 and u2 are true the last

clause forces vi to be true for the formula to be true and the whole formula is true when this happens.

Consequently, the formula evaluates to true if and only if vi = u1 ∧ u2.

• Or: Suppose we want vi = u1 ∨ u2 for some variables u1 and u2. In this case we add (vi ∨ ¬u1) ∧
(vi ∨ ¬u2) ∧ (¬vi ∨ u1 ∨ u2). Suppose u1 is true, in this case for the �rst clause to be true we need vi
to be true and we see that when this happens the formula is true. Similarly, we see that if u2 is false

then the clauses evaluate to true if and only if vi is true. Finally, if both u1 and u2 are false the last

clause forces vi to be false for the formula to be true and the whole formula is true when this happens.

Consequently, the formula evaluates to true if and only if vi = u1 ∧ u2.

CME 305: Discrete Mathematics and Algorithms - Lecture 15 4

Putting this together, we see that given a circuit we can create a CNF formula in linear time whose size is

linear in the size of the circuit such that the CNF formula is satis�able if and only if the circuit is satis�able.

Consequently, to check if the circuit is satis�able we can simply solve the SAT instance we have created and

return this as the answer to circuit SAT.

Now to show that a problem is NP -complete we simply need to show that it is in NP and reduce SAT to

it. Next we show how that we actually only need to consider a restricted class of SAT instances known as

3-SAT.

De�nition 11 (3-SAT). The 3-SAT problem is the problem of checking if a CNF formula is satis�able under

the restriction that every clause in the CNF formula has exactly 3 literals.

Below we show that even though 3-SAT is a restriction on the broader class of SAT problems, nevertheless

it is still NP -complete.

Lemma 12. 3-SAT is NP -complete.

Proof. Clearly 3-SAT∈ NP as SAT∈ NP and SAT is a simple restriction of 3-SAT. Consequently to prove

that 3-SAT is NP -complete it su�ces to show SAT≤p3-SAT.

Now suppose we are given an instance of SAT and suppose some clause Ci has more than 3-literals, i.e.

Ci = l1∨ l2∨ ...∨ lk for some k > 3 and literals l1, ..., lk. Suppose we introduce a new variable u and consider

the formula (l1 ∨ l2 ∨ u)∧ (¬u∨ l3 ∨ ...∨ lk). Suppose that l1 ∨ l2 is true, then setting u = F makes this new

formula true. Similarly if l3 ∨ ... ∨ lk is true then setting u = T makes the formula true. However, if both

l1 ∨ l2 and l3 ∨ ... ∨ lk are false then no matter what u is set to the formula is false. Consequently, we see

that replacing the clause Ci with this new formula doesn't change whether or not the formula is satis�able,

but it does replace a clause of length k with one of length 3 and one of length k − 1. Repeating this, we see

that given a CNF formula we can repeat this procedure to create a CNF formula that is satis�able, where

no clause has no more than 3 literals, such that the total size of the formula has only increased by at most

a multiplicative constant.

Now, suppose some clause has less than 3 literals. In this case we can always introduce a new variable t

and add the clause t to ensure that t = T in any satisfying assignment. Then for any clause with less than

3 literals we can just add ∨¬t terms until it has length 3. Since ¬t = F in any satisfying assignment this

whole procedure does not change whether or not the CNF formula is satis�able.

Combining these two reduction tricks we see that given any SAT instance in linear time we can create a

3-SAT instance of linear size where the answer to each problem is the same.

With the fact that 3-SAT in NP -complete in hand we are now ready to prove the NP -complete of more

combinatorial optimization problems.

3 Independent Set is NP-Complete

As our �rst example of showing that a more natural combinatorial optimization problem is NP complete,

here we show that the independent set problem considered in the previous lecture is NP -complete. Recall

the following de�nition from the previous lecture.

De�nition 13 (Independent Set). For undirected G = (V,E) a set S ⊆ V is an independent set if and only

if every edge e = {i, j} ∈ E it is not the case that both its endpoints are in S, i.e. at least one of its endpoints

CME 305: Discrete Mathematics and Algorithms - Lecture 15 5

is not in S or equivalently, |e ∩ S| ≤ 1. The independent set (decision) problem asks given a number k as

part of the input is there an independent set of size ≥ k.

We now prove that the independent set problem is NP -complete. As with many proofs of NP -completeness

the key is provide a gadget that can be used to encode one NP -complete problem as another.

Lemma 14. The independent set problem is NP -complete.

Proof. We have already argued that indpendent set is in NP (and the proof is trivial) so we just need to show

that 3-SAT≤pindependent set. Now suppose we have an instance of 3-SAT, i.e. a CNF formula F = ∧i∈[k]Ci

where each Ci = l
(i)
1 ∨ l

(i)
2 ∨ l

(i)
3 for literals l

(i)
j ∈ {x1, ..., xn,¬x1, ...,¬xn}. We need to encode this problem

as an instance of independent set.

Recall that F is satis�able if and only if there is a way to assign values to the xi such that at least one

literal in each Ci is true. Consequently, we will try to encode this choice of true literal in a independent set

instance. To do this we create a graph G with a vertex v
(i)
j for each i ∈ [k] and j ∈ [3] corresponding to

literal l
(i)
j and add an edge {v(i)j1

, v
(i)
j2
} for all j1, j2 ∈ [3] with j1 6= j2. Now note in any independent set for

each i at most one of the v
(i)
j can be included. Consequently, the maximum indpendent set in this graph

is exactly k. Now what we will do is add edges so that the choice of true literals are consistent with some

assignment of the variables. To do this for all l
(i)
j = ¬l(a)b we also add an edge.

Now we claim that the size of the maximum independent set in this graph is at least k if and only if F is

satis�able. First, suppose F is satis�able. Then there is an assignment of xi so that at least one literal in

each clause is true. If we take these clauses as the elements of a set, then clear the set is independent as we

did not include both endpoints of the edges within a clause and we clearly did not include both endpoints

of an edge induced by a l
(i)
j = ¬l(a)b as at most one of these two literals is true.

On the other hand suppose that the size of the maximum independent set is at least k. Then, as we have

argued there exist j1, ..., jk ∈ [3] such that the vertices (v
(1)
j1

, v
(2)
j2

, ..., v
(k)
jk

) are independent. Now set the xi

to make each of these literals true letting the xi be arbitrary when no literal corresponding to these vertices

includes xi. Clearly this can be done since at most one of the literal l
(i)
j and its negation can be included by

the edges we add. Furthermore, we see that this assignment of xi is clearly satisfying.

Consequently, given any 3-SAT instance we can construct a graph of size polynomial in the size of the 3-

SAT instance such that there is an independent set of size at least k if and only if the 3-SAT instance is

satis�able.

Recall that in the last lecture we showed that Minimum Vertex Cover =p Maximum Independent Set and

consequentlythe above lemma also shows the decision version of vertex cover, i.e. is there a vertex cover of

size ≤ k, is also NP -complete.

4 Hamiltonian Cycle is NP -Complete

Here we consider another canonical hard combinatorial optimization problem, known as the Hamiltonian

cycle problem and prove that it is NP-complete. Formally a Hamiltonian cycle and the decision problem

associated with it are de�ned as follows.

De�nition 15 (Hamiltonian Cycle). Given a directed graph G = (V,E) a Hamiltonian cycle is a cycle

containing every vertex in the graph. The Hamiltonian cycle problem is that of determining whether or not

a graph contains a Hamiltonian cycle.

CME 305: Discrete Mathematics and Algorithms - Lecture 15 6

Note that a Hamiltonian cycle can be thought of as a permutation on the vertices. For example if V =

{v1, .., vn} then G = (V,E) has a hamiltonian cycle if and only there is a permutation i1, ..., in such that

(vij , vij+1) ∈ E for all j ∈ [n − 1] and (vin , v1) ∈ E. Next we show that the Hamiltonian cycle problem is

NP -complete.

Lemma 16. The Hamiltonian Cycle problem is NP-complete.

Proof. Clearly the Hamiltonian cycle problem is in NP as we can clearly check if a set of edges forms

a cycle and goes through every vertex in linear time. In the remainder of the proof we show that 3-

SAT≤pHamiltonian Cycle. Consequently, suppose we have an instance of 3-SAT, i.e. a CNF formula

F = ∧i∈[k]Ci where each Ci = l
(i)
1 ∨ l

(i)
2 ∨ l

(i)
3 for literals l

(i)
j ∈ {x1, ..., xn,¬x1, ...,¬xn}, we will show how to

encode the satis�ability of this formula as an instance of Hamiltonian cycle.

Perhaps the �rst di�culty in thinking about this problem is how to encode choosing a Boolean assignment

for variables as a Hamiltonian cycle. We �rst show this is possibly by constructing a graph that has 2n

di�erent Hamiltonian cycles, corresponding to every possible truth assignment of the variables and then we

show how to modifying this graph to add the constraint that the truth assignment makes at least one literal

in each clause true.

First we construct a directed graph as follows. We add a special vertex s and a vertex t and for some parameter

k = Θ(n) that we will choose later and for all i ∈ [n] we add a vertex v
(i)
k . Now we add the following edges,

(s, v
(1)
1), (s, v

(1)
k), (v

(n)
1 , t), (v

(n)
k , t), and (t, s). Furthermore for all i ∈ [n] and j ∈ [n− 1] we add (v

(i)
j , v

(i)
j+1)

edge and a (v
(i)
n+1−j , v

(i)
n−j) edge and for all i ∈ [n−1] we add the edges (v

(i)
1 , v

(i+1)
1),(v

(i)
1 , v

(i+1)
n),(v

(i)
n , v

(i+1)
1),

and (v
(i)
n , v

(i+1)
n) This graph is essentially the vertices s and t as well as bidirectional paths P1, ..., Pn each

of length k where Pi corresponds to v
(i)
1 , ..., v

(i)
n and the edges between them. Furthermore, we have s,

connected to each end of P1 and we have each end of Pi connected to each end of Pi+1 with each end of Pi+1

connected to t and t connected to s.

Now it is easy to see that this graph has exactly 2n di�erent Hamiltonian cycles. Starting at s we can then

go to either end of P1 then following P1 until we get to one of the ends of P2, etc. until we go to t and back

to s. Essentially for each path we can choose whether to traverse it from left to right or from right to left

and each such choice induces a Hamiltonian cycle. Consequently, to map this to an assignment of Boolean

variables we can think of traversing path Pi from left to right as setting xi to true and traversing path Pi

from right to left as setting xi to false.

We simply need to add to this graph to force a traversal of a path to correspond to setting one literal in each

clause to true. To do this, suppose we have some clause C = l1 ∨ l2 ∨ l3. Further suppose we then create

some new vertex c and for some m ∈ [k] \ {k, 1} if li is a non-negated variable we add edges (v
(li)
m , c) and

(c, v
(li)
m+1) and if li is a negated variable we add the edges (v

(li)
m+1, c) and (c, v

(li)
m). Further suppose we do this

for all i and consider an arbitrary Hamiltonian cycle in this new graph. The cycle needs to go through vertex

c and suppose without loss of generality that the edge we use is (v
(li)
m , c). Now, the only vertex other than

v
(li)
m and c which has an edge to v

(li)
m+1 is v

(li)
m+2. However if the cycle cannot have the (v

(li)
m+2, v

(li)
m+1) edge as

after following this edge the next edge would have to be (v
(li)
m+1, v

(li)
m) which it cannot be as we have already

visited v
(li)
m+1 . Consequently, the cycle must contain both the (v

(li)
m , c) and the (c, v

(li)
m+1) edge for one of the

li.

Consequently, if we add the gadget described above for C for each of the Ci where for each Ci some m

is chosen separated from the m of the other Ci by a constant, then we see that the resulting graph has a

Hamiltonian cycle if an only if the 3-SAT formula is satis�able in which case the cycle simply goes through

each Pi either left to right or right to left, occasionally skipping an edge to go through a Ci. Since picking

m = 4n is enough to completely separate the m (though a smaller number may su�ce) we see that the the

CME 305: Discrete Mathematics and Algorithms - Lecture 15 7

size of the graph is polynomial in the size of the SAT instance and the result follows.

Using the fact that the Hamiltonian Cycle problem is NP -complete we can show that other related, common

combinatorial optimization problems are NP -complete as well. For example consider the following problem

known as the traveling salesman problem.

De�nition 17 (Traveling Salesman Problem). In the traveling salesman problem (TSP), we are given a

graph G = (V,E) a set of positive edge lengths l ∈ RV
>0 and wish to compute a tour, that is an ordering

on the vertices, that is v1, ..., vn such that the the total length of the tour, that is sum of the shortest path

distances between vi and vi+1 mod n is minimized. In the decision version we wish to know if there is a tour

of length at most c.

This problem encapsulates the problem of having a set of locations one wish to visit and then return back to

start where the total distance traveled is minimized. It is also easily seen as a generalization of Hamiltonian

cycle simply by setting the length of every edge in the graph to be 1, in this case there is a tour of length at

most n if and only if the graph has a Hamiltonian cycle. However, since the problem is also clearly in NP

it is NP -complete.

This should hopefully give you a taste for how to show problems are NP -complete. NP -complete problems

are quite pervasive and on the website we'll have a link to a webpage that gives a long list of NP -complete

problems.

..

	Recap
	3-SAT is NP-Complete
	Independent Set is NP-Complete
	Hamiltonian Cycle is NP-Complete

