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Lecture 14 - P v.s. NP1

In this lecture we start Unit 3 on NP-hardness and approximation algorithms. Up to this point in the class

our focus has been on developing fast algorithms for precisely solving combinatorial problems. At times we

have touched upon problems which we said were more computationally di�cult or provided fast algorithms

for approximating the answer to a problem. However, we did this without any formal justi�cation of the

di�culty of these problems. In this unit we discuss techniques for identifying problems that are di�cult to

solve exactly and approximately solving them when exact solutions seem computationally infeasible to come

by.

In this lecture, we start the unit by introducing a notion of problem hardness known as NP-hardness and a

broad prevalent class of hard problems known as NP-complete problems. In the next lecture we build upon

this to classify the complexity of a number of problems by showing that they are NP-complete.

1 Problem Difficulty

We begin this unit by discussing how we might hope to establish the di�culty of a problem and motivating

the notion of di�culty we will work with. Up to now our focus has been on �easy� problems, i.e. problems

that we can obtain fast running times for. Some examples include the following:

• Global minimum cut - we saw that we can compute this in polynomial time deterministicaly by

solving for the maximum s-t �ow between any s and every t and that faster algorithms could be

achieved by employing randomized algorithms.

• Minimum weight spanning tree (MST) - we saw how to compute this in nearly linear time by

using the greedy algorithm.

• Bipartiteness - we saw how to check if a graph is bipartite using breadth �rst search (BFS).

• Shortest path - we saw how to compute the shortest path in a graph in nearly linear time by variants

of the reachability algorithm.

Here our notion of �easy� was that of being able to solve the problem in polynomial time. While each

problem had a trivial exponential time algorithm we showed that we could obtain a much faster polynomial

time algorithm and in some cases closer to nearly linear time. As we discussed in the beginning of the

course, while certain polynomial running times may be prohibitively expensive in practice for large enough

instances the classi�cation of a problem as polynomial time solvable is in many cases a good indicator that

fast practical algorithms may be achievable.

In contrast to these �easy� problems, there are is a very broad class of combinatorial problems for which we

have exponential time algorithms and yet, not signi�cantly faster or polynomial time algorithm is known.

For example, even slight modi�cations to the problems above induce problems for which we do not know of

polynomial time algorithms. A few examples include the following.

1These lecture notes are a work in progress and there may be typos, awkward language, omitted proof details, etc. Moreover,

content from lectures might be missing. These notes are intended to converge to a polished superset of the material covered in

class so if you would like anything clari�ed, please do not hesitate to post to Piazza and ask.
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• Maximum cut - in this problem we have an undirected graph and we wish to compute the set of

vertices such that the number of edges cut is largest. This the problem induced by �ipping form

minimization to maximization in the minimum cut problem.

• Minimum spanning k connected graph - in this problem we have a weighted graph undirected

graph and wish to compute the subgraph of minimum weight that is k connected, i.e. at least k edges

have to be removed to disconnect this graph. For k = 1 this problem is exactly the MST problem,

however for k > 1 this problem becomes hard

• k-colorability - in this problem we have a undirected unweighted graph G = (V,E) and wish to assign

every vertex one of k values, i.e. �nd l : V → [k] such that for {i, j} ∈ E it is the case that l(i) 6= l(j),

i.e. for every edge each endpoint is assigned a di�erent color. Note that for k = 2 this problem is

exactly the problem of checking if a graph is bipartite, however for k > 2 this problem becomes hard.

• Longest path - in this problem we have a directed graph G = (V,E) and for two vertices s, t ∈ V we

wish to compute the simple path from s-t with the most edges (i.e. the longest simple path).

Now how would we show these problems are hard? For each of these problems the best known running time

is exponential and therefore we could simply try to prove that these problems actually require exponential

time to solve. Even easier, if we are classifying problems as easy if they are polynomial time solveable, we

could more simply just try to prove that these problems are not solvable in polynomial time.

While this is a �ne and natural approach. Unfortunately, the problem of proving such polynomial time lower

bounds on these sorts of problems is incredibly di�cult. There are numerous problems like the ones listed

above for which no polynomial time algorithm is known and there has been extensive research for decades

attempting to provide lower bounds on the running time need to solve these problems. Unfortunately, after

signi�cant e�ort the current best time lower bound results are not even able to rule out that these problems

are solvable in nearly linear time, much less polynomial time.

So what should we do in the face of this di�culty? We would still like machinery to identify problems as

di�cult or in some way possibly separate from easy polynomial time algorithms we know. Ideally, such

machinery so when faced with a new problem we can quickly and easily build some evidence for whether it

falls in the class of easy problems or hard problems are something else.

The classic approach towards solving this problem is that rather than directly attempt to show the hard

problems are di�cult, instead we might hope to show that they are equivalent to each other or equally di�cult

in some way. This would allow us to at least focus our study of these di�cult problems on a few canonical

problems rather than each individually. It would also allow us to better identify these hard problems should

we encounter them in theory and practice and such equivalence machinery could even possibly allow us to

use algorithms for one problem to inform the design of algorithms for another. This is the approach we will

take in this class and in the next section we formally introduce the notion of equivalence we will consider.

2 Polynomial Time Reducibility

In light of the discussion in the previous section to reason about possibly computationally di�cult problems

we wish to have a means of comparing di�erent problems and possibly showing that they are equivalent.

While there are many such notions one could consider the one we will focus on in this class is that of

polynomial time reducibility formally de�ned below.

De�nition 1 (Polynomial Time Reducibility). We say problem X is polynomial time reducible to problem

Y , denoted X ≤p Y if and only if there exists an algorithm for solving X in in polynomial time plus the
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time needed to solve Y a polynomial number of times on polynomially sized input. We de�ne X =p Y to

denote the condition that X ≤p Y and Y ≤p X.

Intuitively X ≤p Y should be interpreted as roughly saying that Y is at least as hard X up to polynomial

time. Since our goal is to reason about whether or not problems are possibly polynomial time solveable, this

de�nition is natural. The statement X ≤p Y is saying that ignoring the impact of polynomial factors X is

easier than Y and X =p Y is saying that these problems are equivalent. To gain further intuition on this

notion consider the following easy lemmas.

Lemma 2. If X ≤p Y and Y can be solved in polynomial time then so can X.

Proof. Since X ≤p Y there is an algorithm that solves X in polynomial time plus the time needed to solve Y

a polynomial number of times on polynomial sized input. Simply running this algorithm using a polynomial

time algorithm for Y yields a polynomial time algorithm for X since a polynomial of a polynomial is a

polynomial.

Lemma 3. If X ≤p Y and X cannot be solved in polynomial time, then neither can Y .

Proof. This is simply the contrapositive of the previous lemma.

These lemmas further motivate the utility of polynomial time reductions in understanding the class of

polynomial time solvable problems. The lemmas imply that if X =p Y then either both X and Y are

solveable in polynomial time or neither of them are. Consequently for the sake of understanding whether or

not problems are equivalent up to polynomial time, we simply need to provide polynomial time reductions

between them. Moreover, as we show in the following lemma, polynomial time reducibility is transitive so we

by providing polynomial time reductions between problems we can hope to identify a broad class of problems

that are polynomial time reducible to each other. Therefore, while it might be di�cult to formally separate

the hard problems we have discussed from polynomial time solvable problems, we can at least possibly show

that they are either all polynomial time solveable or none are.

Lemma 4. If X ≤p Y and Y ≤p Z then X ≤p Z.

Proof. By assumption we can solve X in polynomial time plus the time needed to solve Y a polynomial

number of times on polynomial sized input and in turn we can solve Y in polynomial time plus the time

needed to solve Z a polynomial number of times on polynomial sized input. By simply running this algorithm

for X implementing each solve of Y with the algorithm that reduced Y to Z yields an algorithm for solving

X in polynomial time plus the time needed to solve Z a polynomial number of times on polynomial sized

input, where here we are leveraging the fact that a polynomial of a polynomial is a polynomial.

2.1 Example - Vertex Cover and Independent Set

As a quick example of polynomial time reducibility consider the following natural problems on an undirected

graph.

De�nition 5 (Vertex Cover). For undirected G = (V,E) a set S ⊆ V is a vertex cover if and only if every

edge e = {i, j} ∈ E has at least one of its endpoints in S, i.e. |e∩S| ≥ 1. The minimum vertex cover problem

asks to �nd a vertex cover with a minimum number of vertices.

Note that clearly V is a vertex cover of a graph, so �nding a vertex cover is always trivial. Furthermore,

the minimum vertex cover can always be found in exponential time simply by enumerating over all sets and
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checking if they constitute a vertex cover and then outputting the one of minimum size. However, there is

no polynomial time algorithm known for this problem.

De�nition 6 (Independent Set). For undirected G = (V,E) a set S ⊆ V is an independent set if and only if

every edge e = {i, j} ∈ E it is not the case that both its endpoints are in S, i.e. at least one of its endpoints

is not in S or equivalently, |e ∩ S| ≤ 1. The maximum independent set problem asks to �nd an independent

set with a maximum number of vertices.

Similar to vertex cover, note that clearly ∅ is an independent set in a graph, so �nding an independent set is

always trivial. Furthermore, the maximum independent set can always be found in exponential time simply

by enumerating over all sets and checking if they constitute an independent set and then outputting the one

of maximum size. However, there is no polynomial time algorithm known for this problem.

Even though both of these problems are suspected to be hard we can easily show that they are polynomial

time reducible to each other.

Lemma 7. Minimum Vertex Cover =p Maximum Independent Set.

Proof. Given G = (V,E) we claim that S ⊆ V is a vertex cover if and only if V \ S is an independent set.

To see this, let e ∈ E be arbitrary. Note that trivially |e ∩ S|+ |e ∩ (V \ S)| = 2. Consequently, |e ∩ S| ≥ 1

if and only if |e ∩ (V \ S)| ≤ 1 and S is an independent set, i.e. |e ∩ S| ≥ 1 for all e ∈ E, if and only if

|e ∩ (V \ S)| ≤ 1 for all e ∈ E, i.e. V \ S is an independent set.

Consequently, to compute the minimum vertex cover we can simply compute the maximum independent

set and return its complement as the minimum vertex cover and therefore Minimum Vertex Cover ≤p

Maximum Independent Set. Similarly, compute the maximum independent set we can simply compute the

minimum vertex cover and return its complement as the maximum independent set and therefore Maximum

Independent Set ≤p Minimum Vertex Cover.

3 NP-Completeness

Now, given this notion of polynomial time reducibility, what we would like to do is show that a broad class

of commonly occurring problems for which we do not have polynomial time algorithms are polynomial time

reducible to each other. However, to do this what we would like to have is a slightly clearer characterization

of this class of hard problems, rather than just those reducible from some particular problem. Here we

formally introduce this class of hard problems known as NP-complete problems.

3.1 Decision Problems

Before introducing this class of problems we wish to simplify the discussion of algorithm problems more

broadly. Up to this point our focus has been on the discussion of optimization problems, i.e. problems where

we wish to minimize or maximize some quantity, and on search problems, where we wish to output the best

answer like a subgraph or a cut or a coloring. We will �nd it more convenient to instead focus on decision

problems, i.e. problems where the answer is just �yes� or �no� or �true� or �false.�

For example, rather than considering the minimum vertex cover or maximum independent set problems we

will consider the decision problem variants of �does G have a vertex cover of size ≤ k� or �does G have an

independent set of size ≥ k.� Furthermore, rather than considering the problem of �nding the maximum cut

in a graph or �nding the 3-coloring of a graph we will focus on the decision variants, �does G have a cut of

size ≥ k� or �does G have a 3-coloring?�
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Note that we will not lose much typically by focusing on decision problems rather than search or optimization

problems as the latter are often polynomial time reducible to the former. For example if we want to know

the size of the maximum independent set or maximum cut we can simply binary search on k to �nd it with

only a O(log n) loss in running time. Similarly, if we want to �nd the actual maximum cut or maximum

independent set we can simply make a a guess at whether or not a vertex is in the independent set or two

vertices are in the same side of the maximum cut and see if the value of the problem changes, similar as we

did to reduce checking if a graph has a perfect matching to �nding a maximum matching. This causes only

a polynomial loss in running time.

3.2 Decision Problem Formalism

We focus on decision problems as it allows us to simplify some of the reduction theory and notation regarding

the speci�cation of a problem. Moreover, as we discussed in the previous subsection we can do this without

loss of generality.

Formally, we can think of an instance of a decision problem as simply a sequence of ones and zeros, that we

call a binary string, i.e. s ∈ {0, 1}k where we use |s| = k to denote the length of the string. This binary string

encodes the input to the problem, for instance the graph and k for maximum independent set. Now since

the output of a decision problem is simply �yes� or �no� we can simply denote the set of inputs corresponding

to a �yes� output as some X that is a subset of all strings. Note that this X fully characterizes a decision

problem. For input binary string s we have s ∈ X if and only if the output on s should be �yes� and s /∈ X

if and only if the output on s should be �no.� Consequently, we can think of a decision problem as just

determining or deciding whether or not an input binary string is in X and we can simply de�ne the problem

as this set X.

With this formalism in place we can formally de�ne P , the set of decision problems solvable in polynomial

time as follows:

De�nition 8 (P ). A decision problem X is polynomial time solvable, denoted X ∈ P , if and only if there

is an algorithm that given any binary string s can compute or decide if s ∈ X in time polynomial in |s|.

Note that how the input is represented is important for the de�nition of P . For example, if we encoded an

instance of maximum cut by writing down both the graph and every possible cut as the string, then this

string would have length exponential in the size of the graph and deciding if this graph has a large cut would

be trivially linear time. Consequently, for the problems we consider we will typically assume they have the

natural representation of specifying things like a graph in Õ(n+m) bits or a number in Õ(1) bits.

3.3 NP-Hard Problems

We now have everything we need to de�ne the problem class which characterizes the class of hard problems

we have considered so far. To motivate this class, note that a common property across all the hard decision

problems we have consider so far. For each of these problems, in the case when the answer is �yes� there is a

proof that we can use to verify in polynomial time that is the case. For example, if the size of the maximum

cut is ≥ k then given the maxcut we can easily verify that it has this property. Similarly, if a graph is

3-colorable or it does have an independent set of size ≥ k we can check that a coloring is a valid coloring or

that an independent set is of size ≥ k each in polynomial time. Formally, this class of decision problems for

which the �yes� instances are polynomial time veri�able is known as NP the class of algorithms solvable in

non-deterministic polynomial time. In the following we formally de�ne this notion of veri�cation and NP .

De�nition 9 (NP ). A decision problem X is solvable in nondeterministic polynomial time, denoted X ∈
NP , if and only if there is a polynomial time veri�er for X, that is there is an algorithm B that given binary
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strings s and t output B(s, t) ∈ {”yes”, ”no”} in time polynomial in |s|+ |t| with the property that if binary

string s /∈ X then B(s, t) = ”no” for all t and if s ∈ X then there exists t with |t| = O(poly(|s|)) such that

B(s, t) = ”yes”.

We call B a veri�er as we can use its output to verify whether or not a binary string s ∈ X as we can simply

search over all t to see if B(s, t) = ”yes” for all t. This happens if and only if s ∈ X. We call B e�cient as

it runs in polynomial time and will run in polynomial time for the t with |t| = O(poly(|s|)) for the t such

that B(s, t) = ”yes” in the case when s ∈ X. Consequently, we can think of t as a candidate proof of the

fact that s ∈ X and B as the algorithm that veri�es such proofs.

The class NP is called non-deterministic polynomial time as given an algorithm which can �guess� t we can

solve the problem in polynomial time. This �guessing� is known as non-determinism. For further information,

the curious reader should consult one of the many wonderful texts on complexity and automata theory.

Now, note that the decision version of each of the �hard� problems we have considered so far is in NP as we

have argued. Furthermore, we can trivially show the following.

Lemma 10. P ⊆ NP .

Proof. IfX ∈ P then the algorithm which given binary string s and t simply uses a polynomial time algorithm

to determine s ∈ X and output ”yes” if s ∈ X and ”no” otherwise is a polynomial time veri�er for X.

Consequently, the running times for solving problems in P are in the worst case no larger than those for

solving problems in NP . However, as we have suggested it is not known actually known that the class NP

are actually harder than those in P . In other words whether or not NP ⊆ P and therefore P = NP is

open. It is one of the largest open problems in theoretical computer science and one of the Millenium Prize

problems for which a resolution would earn you at least a million dollars.

Given this issue, as we have discussed our goal instead is to use NP to classify the computational complexity

of our hard problems. To do this, we will argue that the problems we have consider are not only in NP, but

they are (up to polynomial time reductions) the hardest problems in NP . Formally we de�ne the following

complexity classes.

De�nition 11 (NP -Hardness and Completeness). A decision problem X is said to be NP -hard if for all

Y ∈ NP it is the case that Y ≤p X. If additional X ∈ NP then X is said to be NP -complete.

In other words, we say a problem is NP -hard if it is at least as hard (in the sense of polynomial time

reductions) as every problem in NP and it is complete if it is NP as well. Consequently, a problem is

NP -complete if it is of the hardest problems in NP . One of the nice things about this de�nition is that if

we had one NP -complete problem then we would have an easy recipe for proving that some other problem

is NP -complete as well, simply prove it is NP and reduce the NP -complete problem to it.

Lemma 12. If X is NP -complete and X ≤p Y for Y ∈ NP then Y is NP -complete as well.

Proof. SinceX ≤p Y by the transitivity of polynomial time reductions and the de�nition ofNP -completeness

we have that for all Z ∈ NP it is the case that Z ≤ Y and therefore Y is NP-hard. Since Y is assumed to

be NP -complete as well the result follows by the de�nition of NP -completeness.

Consequently, the notion of the NP -completeness has the hope of meeting our objectives. It has a nice

interpretation that seems not too adhoc or tied to a particular problem and it comes with a recipe for

showing that new problems are NP -complete as well. Thus we might hope to easily show that many
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problems are NP -complete if only we could show that one problem is NP -complete. In fact, this can be

shown, that all the hard problems we have considered so far are NP -complete.

However, there is a key missing step in following this program of developing the class of NP -complete

problems. In particular, it is not clear any such problem exists. How do we know it isn't the case that

there is a hierarchy of increasingly hard problems in NP and none that is harder than all? If P = NP then

clearly this would not be the case (as every problem in P would be NP -complete trivially) however as we

have discussed we are far away from doing this.

Fortunately, there were breakthrough results in the early 1971 independently by Cook and Levin that showed

in fact this is not the case and that there are NP -complete problems. Since there breakthrough a broad class

of problems has been shown to be NP -complete and this has been a major intellectual export of theoretical

computer science to many communities in this ability to give evidence of problem di�culty.

In the remainder of this lecture we will provide a sketch of the proof that a problem is NP -complete and in

the next lecture we will use the fact that this problem is NP -complete to show that many more problems

are NP -complete.

4 Circuit Satisfiability is NP -complete

Here we de�ne the problem of circuit satis�ability, or circuit-SAT, and sketch the proof that is NP -complete.

This problem will serve as the basis for showing that a broader class of problems are NP -complete.

Note that the de�nition of a problem being NP -complete is tied only to the idea of a veri�er running in

polynomial time. Consequently, to show that circuit-SAT is NP -complete we will end up showing that

we can encode the computation of this veri�er in some other problem. To do this formally involves being

very formal about the notion of computation we are using and typically involves de�ning things like Turing

Machines. This formal notion is a bit outside the scope of this class and therefore the proof that we provide

that circuit-SAT is NP -complete will only be a sketch. If you would like to see a more formal proof of

the fact that circuit-SAT is NP-complete I would encourage you to take a course in complexity theory or

automata theory or consult one of the wonderful texts on this subject.

Now to formally de�ne the circuit-SAT problem we need to formally de�ne a Boolean circuit.

De�nition 13 (Boolean Circuit). A Boolean circuit is de�ned by Boolean variables x1, ..., xk and a connected

tree with edges oriented from the leaves towards a root with the following properties:

• Each leaf node is labeled with one of xi, T for �true,� or F for �false�

• Each internal node is labeled with one of ∨ for Boolean �or�, ∧ for Boolean �and,� or ¬ for Boolean

�not�

• Each ∨ and ∧ node has in-degree 2 and each ¬ node has in-degree node

Given an assignment of the variables xi, i.e. setting each xi to either T for �true� or F for �false� the outgoing

edge of each internal node is labeled with the result of applying the Boolean operation of that node to each

of the input and the evaluation of the circuit is said to be the Boolean value corresponding to applying the

Boolean operation of the root node to its input. If the output of the circuit is T the circuit is said to evaluate

to true and if the output of the circuit is F the circuit is said to evaluate to false.

Note that a Boolean circuit is simply a particular way of representing a Boolean formula and that the

evaluation of the Boolean circuit as de�ned above is simply the evaluation of the Boolean formula in the

standard sense. Given this de�nition of a Boolean Circuit the Circuit-SAT problem is de�ned as follows.
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De�nition 14 (Circuit-SAT). The circuit satis�ability problem, or circuit-SAT, is the problem of given a

Boolean circuit determining if their is an assignment of the variables that causes the circuit to evaluate to

true.

Consequently, the Circuit-SAT problem is simply the problem of determining if the associated Boolean

formula is identically false or not. In the remainder of this lecture we simply sketch the proof that Circuit-

SAT is NP-complete.

Theorem 15. Circuit-SAT is NP -complete.

Proof Sketch. As with the proof that any problem is NP -complete, the proof usually starts with the easy

part of proving that the problem is in NP . For Circuit-SAT as with many problems, this is quite simple.

Given an assignment of the Boolean variables, we can clearly evaluate the circuit in linear time and therefore

check if it is a satisfying assignment in linear time. Consequently, there is a polynomial time veri�er which

simply considers the proof string t as a candidate satisfying assignment.

Now the much harder part of the proof is to prove that Circuit-SAT is NP -complete. Since we have not

yet established that any problem is NP -complete we will need to prove this by appealing directly to the

de�nition of NP . Let X ∈ NP be arbitrary. By de�nition, we know that X has a polynomial time veri�er,

that is B which takes as input binary strings s and t, runs in time polynomial in |s|+ |t| and always outputs

F if s /∈ X and outputs T for some t with |t| = O(poly(|s|)) when s ∈ X.

Now what we wish to do is in polynomial time encode the execution of B as a Boolean circuit which is

polynomial size |s| and has a satisfying assignment if and only if there exists a t with |t| = O(poly(|s|)) such
that B(s, t) = T . If we could do this, then by solving circuit-SAT we could check if s ∈ X in polynomial

time plus the time to solve circuit-SAT on this polynomial size input. Consequently, if we can do this, then

X ≤p Circuit− SAT and Circuit-SAT is NP -complete as desired.

To do this encoding, let's �x the input length of s as |s| = k. Note that B runs in time at most c where

c = O(poly(k)). Consequently, B uses space at most m for m = O(poly(k)) and thus we can encode the

state for B at each time step i ∈ [m] as some Boolean string si ∈ {0, 1}m. Now we can assume that s1 is

simply s concatenated with the string t, i.e. the input to B. Furthermore, we can assume without loss of

generality that B in the case when it outputs true sets its �nal state to some string sT and when it outputs

false sets its �nal state to some string sF . Now we wish to check when B outputs F and thus to our circuit

we can simply set sc = F .

Now we set our Boolean circuit to check to output T if and only if it is the case that

∧i∈[k−1](si+1 is the state of B if the previous state is si) .

In, other words, we construct the circuit that evaluates to true if and only if the si correspond to the actual

states of B starting from s1. This is where we need to use a formal de�nition of computation and where our

proof only becomes a sketch. We claim that it is possible to write a polynomial size Boolean circuit that is

true if and only if �si+1 is the state of B if the previous state is si� and therefore the circuit can be written

as just the and of the circuits which check this. The idea is that the algorithm simply applies �xed logical

rules to go from one state to the next and we can just write down a Boolean formula encapsulating this.

This is tedious to do formally, but I believe makes sense intuitively.

Consequently, we have constructed a polynomial size circuit that is satis�able if and only if there is a sequence

of states that correspond to a valid execution of B that go from some input (s, t) to a state corresponding

to outputting true. Therefore, by checking if this circuit is satis�able we can check if an input string s ∈ X

in time polynomial in |s| plus the time to solve circuit-SAT once on a problem of size O(poly(|s|)).
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This proof should hopefully also convey or suggest why it might seem that NP is harder than the problems

we have seen in P . We have essentially shown that NP -complete problems allow us to brute force over the

input to polynomial size computation which seems incredibly powerful - though we do not know how to show

formally that this is actually more powerful than anything in P .


	Problem Difficulty
	Polynomial Time Reducibility
	Example - Vertex Cover and Independent Set

	NP-Completeness
	Decision Problems
	Decision Problem Formalism
	NP-Hard Problems

	Circuit Satisfiability is NP-complete

