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Lecture 13 - Random Walks1

In this lecture we continue discussion of random walks on connected undirected graphs initiated in the last

lecture. We show how to compute and approximate various random walk related quantities and we draw

connections between these quantities and concepts in electrical networks. Finally, we conclude this unit

with a brief connection between these concepts and the question of computing a random spanning tree in an

undirected gap.

1 Random Walk Recap

As with last lecture for the remainder of this lecture we let G = (V,E,w) be a undirected simple graph with

positive weights w ∈ RE>0. Furthermore, we consider the standard random walk on this graph where we call

a random sequence v1, ..., vk of vertices a random walk on G if independently for all i ∈ [k − 1] we have

Pr [vi+1 = v | vi = u] =

{
w{u,v}
deg(u) if {u, v} ∈ E
0 otherwise

.

Furthermore, we let W ∈ R
V×V be de�ned as W = AD−1 so that for all u, v ∈ V we have Wvu =

Pr [vi+1 = v | vi = u]. Consequently, W~1u is the distribution of vertices resulting of one step of a random

walk from u.

2 Hitting Time

We begin by discussing how to compute a natural relationship between vertices of a graph, the hitting time

of a random walk. Formally, for all s, t ∈ V we let Hst denote the hitting time from s to t, i.e. expected

number of steps for a random walk started at s to �rst reach t. Here we provide a characterization of Hst in

terms of the Laplacian of a graph and through this how how to compute hitting times e�ciently given the

ability to solve Laplacian systems e�ciently, i.e. a Laplacian system solver.

The technique we use here to reason about the hitting times of a graph is fairly general and can be used to

reason about various random walk related quantities. Let us �x t ∈ V and de�ne the vector h ∈ RV to be

such that for all a ∈ V we have ha = Hat with ht
def
= 0, i.e. we say that the hitting time from t to t is 0. We

wish to compute this vector h and to do it we will write down a natural recursive formula characterizing h.

Note that for every vertex a ∈ V with a 6= t it is the case that the hitting time from a to t is simply one

plus the expected hitting time from the vertices resulting from one step of a random walk from a. In other

words, the hitting time from a to t is given by

Hat = 1 +
∑

v∈N(a)

WvaHvt .

Rearranging, we have that this is equivalent to saying

h>1a = 1 + h>W1a

1These lecture notes are a work in progress and there may be typos, awkward language, omitted proof details, etc. Moreover,

content from lectures might be missing. These notes are intended to converge to a polished superset of the material covered in

class so if you would like anything clari�ed, please do not hesitate to post to Piazza and ask.
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or

1>a (I−W>)h = 1

for all a ∈ V . Similarly, for some unknown c ∈ R it is clearly the case that

h>1t = c+ h>W1t

or

1>t (I−W>)h = c .

Simply writing all these equalities in matrix form we have that for some value c′ ∈ R

(I−W>)h = ~1− c′~1t .

However, since W = AD−1 and D is invertible, multiplying both sides of this by D yields that for some

c′′ ∈ R
(D−A)h = d− c′′~1t

where d ∈ RV with di = deg(i) for all i ∈ V . Now, we know that L = D −A and that ker(L) = span(~1).

Consequently, im(L) is the the orthogonal complement of span(~1), i.e. every vector orthogonal to the all

ones vector. Consequently, there exists a vector x with

Lx = b
def
= d− c′′~1t

if and only if

0 = b>~1 = ‖d‖1 − c′′ .

Therefore, we know that c′′ = ‖d‖1. Consequently, we know that

Lh = d− ‖d‖1~1t .

However, we know that solutions to Lh = b are unique up to adding the all ones vector and thus for any x

with Lx = d−‖d‖1~1t we have that h = x+α~1 for some value of α. However, since we also know that h(t) = 0

we have that x(t) + α = 0, i.e. α = −x(t). Putting this all together we have just shown the following.

Lemma 1. If h ∈ RV with ha = Hat for all a ∈ V then there exists x ∈ RV with Lx = d − ‖d‖1~1t and for

all such x we have h = x− xt~1.

From this lemma we see that if we can solve linear systems in L, i.e. we have a Laplacian system solver, then

the time to solve linear systems in L is an upper bound on the time to compute h. Note that we showed

this simply by writing constraints that h must obey and by the uniqueness of solutions to L we were able to

show that h can be gleaned from solutions to the constraints we wrote. This is a fairly general technique.

Also note that we can write the same lemma a little more compactly using pseudoinverse notation. Formally

we let L† denote the Moore-Penrose pseudoinverse of L. For symmetric PSD matrices M the pseuoinverse

M† is simply the matrix that is the inverse of M outside of the kernel of M and has the same kernel as M.

More formally, if M = UΛU> for U with orthonormal columns and diagonal Λ then M† = UΛ†U> where

Λ† is the matrix where Λ wherever every non-zero entry is inverted and zero entries are kept the same.

Note that if there exists some x with Lx = b then L(L†b) = b. Consequently, an immediate corollary of the

above lemma is as follows.

Lemma 2. For all s, t ∈ V it is the case that Hst = (~1s −~1t)>L†(d− ‖d‖1~1t).

Proof. Let x = L†(d − ‖d‖1~1t). Since ~1 ⊥ d − ‖d‖1~1t it is the case that Lx = d − ‖d‖1~1t and thus by the

previous lemma

Hst = ~1>s h = ~1>s (x− xt~1) = xs − xt = (~1s −~1t)>x .
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2.1 Commute Times

We can use the analysis in the previous section to give an even simpler formula for the commute time between

a and b. Recall that the commute time from a to b, de�ned by Cab is given by Cab = Hab + Hba, i.e. the

expected number of steps for a random walk starting from a to get to b and back again. We show the

following simple formula for Cab.

Lemma 3. For all a, b ∈ V it is the case that Cab = ‖d‖1 ·
(
~1a −~1b

)>
L†(~1a −~1b).

Proof. We have that

Hab = (~1a −~1b)>L†(d− ‖d‖1~1b) = ‖d‖1 ·
(
~1a −~1b

)>
L†
(

1

‖d‖1
d−~1b

)
.

and

Hba = (~1b −~1a)>L†(d− ‖d‖1~1a) = ‖d‖1 ·
(
~1a −~1b

)>
L†
(
~1a −

1

‖d‖1
d

)
.

Summing these two quantities yields the result.

Note that this lemma says that we can compute Cab simply by looking at the quadratic form of L†. Note

that since L is PSD so is L†and thus Cab is simply given by the quadratic form of a PSD matrix. One

nice consequence of this formula is that we can use things like Cheeger's inequality to easily reason about

commute times.

For example, note that λn(L†) = 1
λ2(L) and therefore

(~1a −~1b)>L†(~1a −~1b) = RL†(~1a −~1b) · ‖~1a −~1b‖22 ≤
2

λ2(L)
.

Consequently, if we say have a graph that is a path of length n and we wish to know the commute time

between the endpoints of the path. Then it can be shown (see for example the homework) that λ2 in this

graph is at least Ω( 1
n2 ) and therefore the commute time C satis�es

C ≤ O(n) · 1

λ2(L)
= O(n3)

i.e. the commute time between the endpoints is at most O(n3).

3 An Electrical Perspective

Another way to reason about random walks on undirected graphs and quantities like commute times in these

graphs is by viewing the graph as an electric network. There is work that directly connects these notions,

here we will show that these notions are equivalent by relating electric networks too Laplacian systems of

equations and therefore random walks.

To build this equivalence we de�ne the electrical network associated with an undirected graph as follows.

For an undirected graph G = (V,E) with positive weights on the edges r ∈ R
E
>0. We interpret each edge

{i, j} ∈ E as a resistor and each vertex i as a junction where resistors may connect. We further interpret re
as the resistance of the resistor connecting junction i to junction j when e = {i, j}.

Now the question we wish to ask about this electric network or network of resistors is if we force electric

current to enter and leave the resistor network, where does it go? Formally, we assume we have a vector
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b ∈ RV specifying for every junction i ∈ V how much electric current enters or leaves junction i. For example,

we could imagine hooking up vertex i and j to endpoints of a battery so that b = ~1i − ~1j , i.e. one unit

of current is �owing out of i and into the network and −1 unit of current is doing the same at j, i.e. one

unit is coming in from the network at j. Now the question we wish to ask, is given this constraint of how

much current enters and leaves every vertex, where does the electric current go? In other words, if for all

e = (i, j) ∈ E we let fe denote the amount of current going from i to j what is f?

To answer this question and characterize the electric current, lets list a few properties of the electric current

f ∈ RE .

• Kircho�'s current law: f ∈ RE must route the demands b, i.e. im(f) = b or b gives the the total

current imbalance at every vertex.

• Ohm's law: this classic law says the the electric current is actually given by potentials, or some real

valued assignment of values to the vertices of the graph. Formally, this says that there must exist

potentials, v ∈ RV such that for all (a, b) ∈ E it is the case that f(a,b) · r(a,b) = va − vb in other words,

the current times the resistance over an edge is equal to the potential di�erence over an edge.

• Thompson's energy principal: this is the idea that electric current follows the path of least resis-

tance or the one that minimizes energy. Formally, it says that over all values f ∈ R
E the one that

minimizes energy, i.e.
∑
e∈E re · f2e is the electric current.

As we will see certain pairs of these properties imply the third and su�ce to characterize the electric current.

3.1 Krichoff’s Law and Ohm’s Law

Here we show that Kircho�'s current law and Ohm's law su�ce to characterize the electric current in terms

of Laplacian systems. To show this, let's look at a linear algebraic expression of these laws. Let e1, ..., em
denote the edges of the graph / network and let us an impose an arbitrary ordering of the endpoints of each

edge so that ei = (ai, bi) for all i ∈ [m] where ai, bi ∈ V . We do this simply so that we have a canonical

interpretation of f(ei) as the amount of current from ai to bi. Now recall that ~δei = ~1ai − ~1bi and that

B ∈ RE×V is the matrix where row i is given by ~δ>ei .

Now let us look at [B>f ]a for arbitrary f ∈ RE and a ∈ V we have that

[B>f ]a = ~1>a
[
B>f

]
=

∑
(a,b)∈E

fa,b −
∑

(b,a)∈E

fa,b = im(f, a) .

Consequently, B>f = im(b) and the Kircho�'s current law that im(f) = b we can write compactly as

B>f = b.

Next, let us consider Ohm's law. Note that for any v ∈ R
V we have that for ei ∈ E it is the case that

[Bv]ee = vai − vbi . Consequently, if we let R ∈ RE×E be the diagonal matrix with Re,e = re we have that

the constraint that f(a,b) · r(a,b) = va − vb for all (a, b) ∈ E can be written more compactly as Rf = Bv.

Consequently, we see that f obeys Ohm's law if and only if f = R−1Bv.

Now, suppose that we de�ne we = 1
re

for all e ∈ E and let W ∈ RE×E be the diagonal matrix with We,e = we
for all e ∈ E. With this we have that f obeys both Kircho�'s law and Ohm's law if and only if B>f = b and

f = WBv for some v. Combining these implies that B>WBv = b. Consequently, in order for f to be the

electric current there must be some v ∈ RV with Lv = b and moreover f = WBv for one of these v vectors.

However, the solutions to Lv = b are unique up to adding α~1 for some α and ~1 ∈ ker(B). Consequently, we

have shown the following.
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Lemma 4. A vector f ∈ RE is the unique electric current for b if and only if f satis�es Kircho�'s current

law and Ohm's law which in turn happens if and only if for any vector v with Lv = b, which must exist, we

have f = R−1Bv. In other words, f = R−1BL†b.

3.2 Characterizing Commute Times

One nice consequence of the analysis in the previous section is that we can provide another characterization

of commute times in the graph. Suppose b = ~1s −~1t, i.e. the demands are to have one unit of current leave

s and one unit enter at t. Let f = R−1BL†b be the electric current routing b. What is the energy of f? We

have that ∑
e∈E

ref
2
e = f>Rf = b>L†B>R−1RR−1BL†b = b>L†B>R−1BL†b

= b>L†LL†b = b>L†b = (~1s −~1t)>L†(~1s −~1t) .

This quantity is known as the e�ective resistance between s and t and is a fundamental measure of the

connection between s and t. Consequently, from our earlier analysis we see that the commute time between

s and t is simply the e�ective resistance between them times the sum of the degrees of the vertices in the

graph. Note that e�ective resistances have many applications and as we may discuss later in the class,

sampling edges by e�ective resistance can be used to construct sparse approximate graphs that preserve

many properties of graphs approximately, i.e. let us approximately sparsify the graph.

3.3 Thompson’s Energy Principal

Here we show that Thompson's energy principal provides an alternative characterization of electric current.

Whereas we have already shown that the electric current is the unique vector f routing b and obeying Ohm's

law, here we show that f is also the unique minimum energy vector routing b.

Lemma 5. If f minimizes
∑
e∈E ref

2
e among all f ∈ RE such that im(f) = b then f is the electric current

routing b.

Proof. Suppose im(f) = b and that f minimizes e(f) =
∑
e∈E ref

2
e = f>Rf . Note that 5e(f) = 2Rf and

since f is minimal it must be the case that 5e(f) ⊥ ker(B>), as if this was note the case then for the vector

g ∈ ker(B>) with g not perpendicular to 5e(f) by moving in�nitesimally along the direction g we would

be able to decrease e(f) while preserving B>f = b. Now note that the space orthogonal to the kernel of

B> is the image of B and therefore 5e(f) ⊥ ker(B>) implies 5e(f) ∈ im(B), i.e. there exist w ∈ RV with

2Rf = Bw. By scaling this implies there exists v ∈ R
V with Rf = Bv or f = R−1Bv. Consequently,

B>f = b and f = R−1Bv and thus f both routes the demands and is given by voltages and therefore is the

electric current.

One nice application of this lemma is that it allows us to easily show certain monotonicity properties of

things like e�ective resistance. For example, suppose we add brand new edges to our electric circuit, does

the e�ective resistance increase or decrease? Note that with the new edges we are only giving more freedom

to the valid f with im(f) = b and thus the minimum energy f satisfying this has at most the energy it had

before and therefore the energy of f cannot increase and neither can any e�ective resistance.
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3.4 More

There are many more connections between electric networks and random walks and for further reading see

the course webpage or email me.

4 Cover Time

We conclude by considering one more natural property of random walks on graphs that we would like to

compute. Recall that the cover time of G, denoted C(G), is the maximum over all starting vertices of

the expected number of steps of a random walk needed before every vertex in the graph is visited at least

once. Here we do not give an algorithm to compute C(G) precisely but we do show that it can be computed

approximately e�ciently using techniques we have seen. Formally, we provide the following interesting result

showing that C(G) is well approximated by the maximum hitting time between any pair of vertices in the

graph.

Lemma 6. Let Hmax
def
= maxa,b∈V Hab then Hmax ≤ C(G) ≤ Hmax ·O(log n).

Proof. Clearly, Hmax ≤ C(G) as visiting every vertex takes at least as much time as it takes to visit every

pair. The more di�cult and perhaps surprising direction is to show that C(G) ≤ Hmax ·O(log n). To prove

this, let a ∈ V be arbitrary and suppose we still need to visit vertices v1, ..., vk. let h be a random variable

denoting the number of steps until we visit at least half of the vi. Furthermore, let t(vi) be a random variable

for the number of steps of the random walk we take to visit vi for the �rst time. Clearly∑
i∈[k]

t(vi) ≥ b
k

2
ch

as we visit half the vertices after we have visited half the vertices. However by linearity of expectation this

yields that

Eh ≤ 1

bk2 c

∑
i∈[k]

Et(vi) =
1

bk2 c

∑
i∈[k]

Havi ≤
k

bk2 c
·Hmax = Hmax ·O(1) .

Consequently, in expectation every O(Hmax) steps we visit half the remaining vertices and in Hmax ·O(log n)

steps we visit all of them.

Note that Hmax is within a constant factor of the maximum expected commute time and therefore if we have

a bound on the worst commute time between vertices of a graph (as we had for the path) we have a bound

up to a O(log n) factor of the cover time of the graph.

One interesting application of this to computing a random spanning tree in a graph. Suppose we have an

unweighted undirected graph and among the space of all spanning trees in a graph we wish to compute one

uniformly at random. To do this consider the following algorithm, pick a random vertex in the graph with

probability proportional to its degree and then run the standard random walk. Every time a vertex is visited

for the �rst time (other than the �rst vertex) add the edge used to reach it to a set. Once all the vertices

are visited output the associated set of edges, which in turn must be a tree. It can be shown that this tree

is such a random spanning tree and thus we can compute a random spanning tree in an expected running

time equal to the cover time of the graph.
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