MS&E 315 and CME 304
NUMERICAL OPTIMIZATION
Class Project

The purpose of the project is to gain some experience in the difficulties of defining a problem, imple-
menting an algorithm and interpreting output. Also to appreciate that good optimization algorithms
are necessary.

You will be required to write a routine that minimizes a function F'(x) subject to the bounds
I <z < u. You will eventually use a quasi-Newton method. However, start with steepest descent
method. You will eventually use your routine to determine a control of a solar sail to move a cargo
vessel from an Earth orbit to an orbit of Mars. Details of how to formulate that problem will be given
later. You will need a linesearch routine. You may if you wish write a sophisticated routine but I
would not do this immediately and it may not be necessary to solve the problem. A simple routine
would be to take a unit step and stop if that reduces f(z) and p’y > 0, where y is the difference of
the new gradient minus the original. If f(z) is not reduced backtrack using bisection. If it is reduced
but p”y < 0 take a larger step (say double it). You need to work out the details but this approach is
simpler than a sophisticated algorithm using approximations.

Dealing with bounds on the variables is quite straightforward for the steepest descent algorithm.
Basically in any given iteration a subset of the variables are kept fixed and the steepest descent method
is applied to a function of the remaining variables. In the linesearch a maximum step is first computed
such that it is the largest step possible along the search direction for the step to be feasible (lie within
the bounds). If the result of the search is that the next iterate is on a new bound then in the following
iteration the relevant variable is kept fixed on this bound (by making the corresponding element of p
zero). If other variables are on their bounds whether or not they are fixed depends on the sign of the
gradient with respect to the variable. If a variable is on its upper bound then the variable remains
on the upper bound, say u;, if g; < 0 (the steepest descent step would increase that variable) when
computing the next iterate. Likewise, a variable is kept on its lower bound if g; > 0. In the coming
weeks we shall deal with the rules for the quasi-Newton method, where it will be shown they are
similar to those for steepest descent.

You will not be required to submit code and may use any language you wish. In your final report
you will need to justify why you are confident your code runs correctly. This is an individual project
but you may consult with others on aspects of programming and the use of latex. You may also submit
a request to me to do a project of your own.



