The Problem

minimize f(z) objective
I

subject to <z <u simple bounds
4 < Ar < u, linear constraints
lc < c(x) <uc nonlinear constraints

where z, [, u are in R, A is an m; X n matrix, ¢(x) is an ma-vector of smooth
nonlinear functions and f(x) is a smooth scalar function.



Placement of Substations Iin an
Electrical Network (SSO)
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SSO - Review
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Service area: each grid block is 1/2 mile by 1/2 mile




SSO - Review

 “Model distribution lines
and substation locations
and
— Determine the optimal

substation capacity
additions

Service area: each grid block is 1/2 mile by 1/2 mile



SSO - Review

Characteristics:

More substations:
Higher capital cost
Lower transmission cost

Capital costs:
$4,000,000 for a 28 MW
substation

Cost of losses:
$3,000 per kw of losses

Service area: each grid block is 1/2 mile by 1/2 mile



Variables

I : Vector of currents at each node in the network
V' : Vector of voltages at each node in the network
Y : Network Admittance matrix

y; : Binary variable specifying whether node ¢ has a substation or not.

Ceap : The installation cost of a substation.

Ci,ss : The cost of electrical losses in a network.
Scap @ Capacity of a substation.
¢; . Electrical load at node 1.

m X n: Grid dimension.




Problem of Interest

Viil,y

YV =0
V; <1 for all 2

subject to < Scap,Yi = 1 tor all ¢
= {;,y; =0 for all ¢
. € {0,1} for all ¢




Admittance Matrix

Y is symmetric and positive semidefinite.

Y has one zero eigenvalue with an associated eigenvector (1,...,1)

A; and B, are tridiagonal and diagonal matrices, respectively.



OPTIMIZATION OF LIBRATION
POINT MISSION TRAJECTORIES

« At a libration or Lagrange point the forces of two orbiting celestial
bodies balance to zero. The two points for the Sun-Earth system
that are colinear are known as the L, and L, points (there are 5
points altogether). In theory if a body was placed at such a point
it would remain. The trick is to put it there. At such points no
energy is needed to loiter forever, which is what makes it
attractive for long term missions. The points are also sufficiently
close to Earth that communications is not a issue.

« In reality the forces are more complex and are not independent
of time, which implies not only will the point move but the
movement leaves any satellite in the old position subject to force
and it will also move and continue to move.



Background
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James Webb Space Telescope




Background

FIVE LIBRATION POINTS
OF EARTH-MOON SYSTEM
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1.5 MILLION km ¥ 1.5 MILLION km




Equations of Motion

2y +x — 3 - 3
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Small Halo
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1.1 The Frequency Assignment
Problem (FAP)

PROBLEM FORMULATION:

Find an assignment of frequencies to base
stations that minimizes an objective and

fulfills a set of side constraints.
-NP hard

F4




1.5 Characteristics of FAP Data
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Equivalence with Global Optimization

« Transformation of integer requirements to constraints

0<x;<u;,x;eZ < [](x-i)=0
=1
« Addition of Penalty Function

Minmmize

subjectto  Ax=5>b

= Need to find global optimizer of above problem
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Conventional Launcher:
Ariane 5 Dual Payload LEO/GEO
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Direct optimization of
Step-and-Shoot segments
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Direct optimization of
Step-and-Shoot segments

Conventional Launcher:
S N O PT Ariane 5 Dual Payload LEO/GEO

having an impact

Facility location:

Robot at JPL substations in a network



Numerical Optimization

Direct optimization of
Step-and-Shoot segments

SNOPT
having an impact station

Facility location:

Robot at JPL substations in a network
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