Lecture 2:

Constitutional: head to tail etc.
Configurational: meso vs. racemic
Conformational: g+, g-, t
Relationship between end to end distance, Rg , molecular weight,

Lecture 3:

Step Growth Polymerization
-Number fraction distribution
-Carother's Equation
-weight distribution
Molecular Weight
-Number average and weight average
-Calculated from weight distribution or number distribution -Integral expressions
Polydispersity/Variance of Distribution

Lecture 4:

Chemical Potential and activity: effect of solvent, pressure, temperature on these quantities
Van't Hoff Equation -> higher order correction terms
$2^{\text {nd }}$ virial coefficient: effect of solvent on this quantity.
Zimm Plot: Understand how it is obtained, see pg 94-95 in sperling
Light scattering (relatively less important)

Lecture 5:

Definitions and interrelationships between viscosities
Chain expansion and relationship to chain effective volume and viscosity
Mark Houwink Eqn, relating molecular weight to viscosity
GPC Calibration
SUMMARY OF USEFUL EQUATIONS

Lecture 6:

Stabilization of a free radical center: effects of monomer molecular structure
Initiation, Propagation, Termination (coupling, disproportionation)
Rate Equations, Rate constants (have idea of values)
Kinetic Chain Length
Chain Transfer
-to polymer (backbiting), monomer, solvent, transfer agent
-effects on degree of polymerization
-molecular structure as it effects ability of molecule to "receive" a radical
Rate and rate constant energetics
-effect on polymerization rate
-effect on degree of polymerization
Autoacceleration (I'd suggest supplementing lecture notes in this area with outside reading)

Lecture 7:

Lots of probability
Conditional Probability of different orders:
-how much of a sequence effects the next monomer added?
$-1,2,3$ monomers back? (bernuoillion, terminal, penultimate)
Chi = Interaction Parameter
Average Lengths of A / B runs

Lecture 8:

Composition of copolymers:
-Propagation reactions and rates
-Ratios of rates (r values)
-Instantaneous composition
-Effects of feed-rate, relationship between feed-rate and composition
-Special Cases of r values: ideal case, azeotropic, alternating
-Q-e- scheme
Relating observed compositions to conditional probabilities
Calculation of interaction parameter

