
Problem Set #5 Solutions 
Chemical Engineering 160/260 
 
Problem 8.4 
We’re given Tg

 as 10oC and given the viscosity at 25oC, and asked to find the viscosity at 
40oC.  We can use equation 8.48 (WLF equation).  Assume in this equation that log is log 
base 10.  We solve for ηg and use this value to determine η(40). 
 
Base 10 
ηg = η(T) exp(40.157(T-Tg)/(51.6+T-Tg)) = 5.083 E12 Poises, with T=25o, Tg=10oC,
 η(25)=6E8 Poises 
η(40oC) = ηg exp(40.157(Tg-T)/(-51.6-T+Tg)) = 1.97 E6 Poises, using T=40oC, Tg=10oC , 
 ηg from above. 
 
As expected viscosity decreases with increasing temperature. 
 
Problem 8.12 
The copolymerization of divinyl benzene (structure on page 100 in sperling) could be 
viewed in two manners.  First, copolymerization in itself can act to elevate the glass 
transition temperature.  Second, the divinyl benzene is difunctional and can act as a cross-
linker.  The relative magnitudes of the two shifts in Tg can be calculated using the 
formulas of sections 8.8.1 and 8.6.3.2, respectively. 
 
Copolymerization: 
We use the Fox equation.  This makes several assumptions, including assumed 
miscibility and that the product of the ∆cpiTi = constant for both the components; 
according to Sperling, this latter condition is applicable for random copolymers. 
 
The mass fractions of divinyl benzene and vinyl acetate are 
M1=(130)(0.05)/((0.05*130)+0.95*86))=0.0737, and M2=1-M1=0.9263, respectively.  
We are given T2=(29+273oK)=302oK.  We are not given any information on the glass 
transition temperature of poly(divinyl benzene).  To first approximation, we can treat it as 
being very high molecular weight polystyrene, since we know that both molecular weight 
and cross-linking increase Tg.  But we’d expect Tg to be even higher since polymerization 
of a difunctional monomer will likely lead to a very highly crosslinked, perhaps even 
fully gelled polymer.  From Table 8.8, a Tg for polystyrene is 368oC.  From Figure 8.25, 
very high molecular weight PS has Tg~378oC.   Let’s assume a Tg of 400oK, and see what 
kind of effect this has on the copolymer Tg. 
 
T = (0.0737/400 + 0.9263/302)-1= 307.6oK, or a shift in Tg of close to 5.6o.  Remember 
this is considering a fairly high Tg for the divinyl benzene component. 
 
Crosslinking: 
Equation 8.62 is the pertinent equation.  K is given in Table 8.9 as roughly 1.3E-23.  M is 
the mer molecular weight.  We use a molar average of the two components:  eg M = 
(0.05*130+0.95*86) = 88.2 g/mol.  χ’ is the number of crosslinkers by gram.  Assume 



that each divinyl benzene act as a crosslinker, and consider a 100 mol sample.  The total 
number of crosslinkers (divinyl benzene molecules) in the sample is 5 mol * 6.022 E23 
molecules/mol.  The total weight of this sample is 5 mol * 130 g/mol + 95 mol * 86 
g/mol = 8820g.  Then χ’=5 * 6.022 E23 / 8820 = 3.4138 E20 g-1.   

γ is the number of flexible bonds per mer, backbone, and side chain.  Table 8.9 
gives values of 2 and 4 for polystyrene and PMMA respectively.  This variable is 
somewhat cryptic; a first guess would be that all single bonds are “flexible” bonds; 
styrene then has two noting that the vinyl double bond becomes a single bond on 
polymerization.  By the same treatment, however, methyl methacrylate would have γ=5 
but its real value is 4.  The exact value will not change the shift in Tg immensely, so 
taking styrene and methyl methacrylate as analogous to divinyl benzene and vinyl 
acetate, respectively, gives γ = 4 and γ = 3, respectively.  A molar average of these values 
gives γ = 3.05 which is what we use. 

Then we have: 
 
KMχ’/γ = (1.3E-23)(88.2)(3.4138 E20) ÷ 3.05 = 0.12834 
 
∆Tg = (302)*( 0.12834 / (1-0.12834) ) = 44.5oK 

 
This is a much larger value than that obtained by the copolymerization method.  Thus we 
see that crosslinking in this case plays a much larger role in increasing the glass transition 
temperature.  Combining the two results, we might expect the new Tg to be 75-80oC. 
 
Problem 9.2 
We have a rectangular prism of an elastomer which is crosslinked with a tetrafunctional 
molecule.  We are given the stress at 25oC in this material for an elongation of α=25/10 = 
2.5.   
 
a)  The appropriate equation is 9.70, and for a tetrafunctional crosslinker the front factor 
is ½.  We assume that there is no swelling so ri =ro.  Solving for n,  
 
n = 2σ/kT (α - 1/α2)-1 
 
Note: 10 dynes/cm2 = N/m2.  Substituting in values k=1.38E-23 J/K, T=298oK, α=2.5, and 
σ = 1.5E6 N/m2 yield n = 517.5 mol m-3 = 5.175 E8 mol cm-3.  Multiplying by 
advogodro’s number yields 3.116 E32 chains/cm3. 
 
b)  Using the results of part a) and changing α = 1.5 gives σ = 6.77 E6 dyne/cm2.  
 
c)  Here we just change the temperature so T=373oC, and α = 2.5 again.  We get σσσσ 
=1.878E7 dyne/cm2. 
 
Problem 9.13 
We consider only the final state.  A drawing of this state is shown below: 
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We make the assertion that any cross section is subject to the same amount of force*.  If 
it were not, then rearrangement would occur (ie the line between the two pieces or rubber 
band would shift).  Hence we can write two equations, one each for the force in each of 
the rubber bands, and equate the two.  This approach allows for a change in the cross 
sectional area in each rubber band but assumes an infinitely fast jump in dimensions at 
the interface.  We also assume ideal elastomers, in which poisson’s ratio is ½, and 
volume is conserved during deformation.  Hence if the original cross sectional area of the 
bands was A, then the area at any deformation is given by A/α. 
 
Define:  αA = (40-x)/10 
  αB = (x)/10 
 
In Rubber Band A: 
F = A/αA RTn(αA – 1/αA

2) 
 
In B: 
F = A/αB RTn(αB – 1/αB

2) 
 
Now we simply equate the two forces and solve for x with eg maple.  (Maple did a poor 
job solving analytically, so I just plotted the two functions to solve for x). 
 
We come up with an answer of x = 14.22 cm. 
 
 
* Why force and not stress?  My thought is the following.  The condition for equilibrium 
from eg Newton’s laws is really summation forces = 0.  If we consider a particle or mass 
and draw a free body diagram for it, we consider all the forces on it, not the stresses.  In 
this case the stresses will not be the same because the cross sectional areas of each rubber 
band are different.  During the derivations in class however, we assumed uniform cross 
sectional areas, so the forces and stresses were both equal across elements in series. 



> amm:=1/aA*TA*(aA - 1/aA^2); 
> bmm:=1/aB*TB*(aB - 1/aB^2);  

 := amm
TA 
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> aA:=(40-x)/10; 

 := aA  − 4
1

10 x  

> aB:=x/10; 

 := aB
1
10 x  

> TA:=20+273; 
 := TA 293  

> TB:=150+273; 
 := TB 423  

> plot({amm,bmm}, x=14.215..14.225); 

 
>   



Problem 10-13 
The total strain in the system can be determined as the sum of the strains in the upper 
dashpot and in the lower spring/dashpot system, that is: 
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The stress which is applied is a function of t as shown below: 
 
 
 
 
 
 
 
a)  Derive the strain (length) for 0<t<to 
We can consider regions 1 and 2 separately, each having a stress σ applied to it.  This 
assertion can be proven just by taking a free body diagram at the node between 1 and 2. 
 
For the strain ε1, we can write 
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so integrating with initial condition ε2 (t=0) = 0 yields: 
t
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so this portion of the model extends linearly with time. 
 
For the strain 2ε , we must consider that the strain in both arms must be the same, and 
that the total stress supported by both arms is equal to the sum of the stresses in each arm.  
If the stress across the spring is σs and the stress across the dashpot is σd then we know 
that 
 

σ = σd + σs 
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Solving for the stresses in the last two equations and plugging them back into the first 
equation gives 
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Solving this equation by use of an integrating factor or other means yields 
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So this region begins with zero strain (the dashpot prevents instantaneous deformation) 
and increases exponentially to the limiting value dictated by the spring. 
 
Therefore the total strain in of the system in the region 0<t<to is  
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A plot of this strain is shown below schematically. 

 
 

b)  For this portion we want the strain for t>to.  The stress is removed and the system 
allowed to relax.  Again the strain is that for the two regions added.  The dashpot at the 
top of the system cannot relax without a restoring force to cause it to contract.  Since 
there is no such storing force (the applied stress is zero, not compressive), it remains 
strained to a value  
 

ot
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1 η
σε =  for all t>to.  The second region can relax however.  The spring portion asserts 

a restoring force because it is stretched.  This causes a decrease in the strain toward zero, 
but again the rate is limited by the dashpot.  Qualitatively we expect an exponential 
decrease in strain from the value at to to zero with infinite time.  This can be shown by 
considering equation * (which still applies) and setting σ=0. 
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As predicted, this starts at ε2(to) at t=to and decays to zero with time. 
Again combining the strains yields total strain as a function of time t>to. 
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A schematic plot is shown below. 
 

 
 
 
 
 

Problem 10-14 
Given Data: 
Tg = 5oC 
T = 30oC 
n = 1E-4 mol/cm3 
ηg = 1E13 poises 
σ = 1E7 dynes/cm2 
We are told that E obeys rubber elasticity theory and viscosity obeys the WLF equation. 
We are working with a polymer following the Kelvin model (spring and dashpot in 
parallel). 
 
a)  The governing equation for a creep experiment within the Kelvin model was already 

derived in the previous homework problem as 


 −−= η
σε Et

E exp(1 .  Note that this 

σ/η1 to 

ε2(to) 

t = to 



derivation assumes that E is independent of strain.  In actuality this is only true for small 
strains, as discussed in Sperling.  For small strains, E~3nRT; for larger strains  
E = σ/ε = nRT(α-1/α2) ÷ (α-1)**, since ε = (l-lo)/ lo = l/ lo - 1 = α-1.  We will assume 
only small strains apply to simplify the problem. 
 
E=3nRT = 3 (1E-4 mol/cm3)(106 cm3/m3)(273+30oK)(8.314 J/molK) =7.557E5 N/m2 or 
7.557E6 dynes/cm2. 
 
Viscosity obeys the WLF equation.  We use the universal form of this equation 
log(η/ηg)=-17.44(T-Tg)/(51.66+T-Tg).  With T-Tg=25oK and ηg as given in the problem, 
η = 2.0328E7 Poises. 
 
One poise is a g/cms = 10-1Ns/m2.  So since σ/E = 1E7 / 7.557E6 = 1.323, and E/η = 
7.557E6/2.0328E7 s-1 = 0.3718 s-1, then 
 
εεεε = 1.323 (1 – exp(-0.3718 t)) with t being in seconds, ε is unitless.  The required plot is 
shown below. 
 
 

 
 
Two points are worth making.  First, the limiting value dictated by the spring portion of 
the model is reached within a few seconds.  Second, the strains predicted by our 
treatment are reality small, so the treatment with E = 3nRT is self consistent. 
 
FYI: To solve the problem exactly for larger strains one can use the exact form of the 
young’s modulus to arrive at a non-linear first order ODE for strain as a function of time.  
We use the same approach taken in the previous problem, arriving at equation *, 

εεησ E
dt
d +=

.  
Rather than having E as a constant, we assume it is a function of strain.

  
From Sperling eqn 9.36 E=nRT(2α2+1/α).**  Since α=ε+1, this becomes 
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Dividing both sides by nRT gives the ODE as 
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Evaluating the constants gives: 97.3=
nRT
σ

 
and 699.80=

nRT
η

. 
Using maple’s DEplot numerical plotting method gives strain as a function of time shown 
below: 

 
This approach does make a difference in both the rate of creep (faster) and the limiting 
strain (lower) compared to the case where E is independent of strain. 
 
b)  The rate of creep is the slope of the strain versus time plot.  Obviously it might be of 
interest to slow this down to retain part dimensions, etc.  Taking dε/dt we find that this 
rate is given by  
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Note that this equation gives the largest values (fastest rates of creep) at low times.  This 
is obvious from the graph above. 
 
So we have three variables to change to slow down this rate.  A decrease in the applied 
stress with decrease the rate of creep for all times.  Sometimes though this is not an 
option as the part is required to be used in certain dictated working conditions.  An 
increase in young’s modulus will also decrease the creep rate for all times greater than 
t=0. 

 
A change in viscosity is a bit more complicated, as viscosity appears twice in the 
equation with competing trends.  Plotting several values of viscosity shows that for low 
times, the rate decreases with increasing viscosity, while above a certain value of time, 
the creep rate increases with increasing viscosity.  However the total creep experienced 
(proportional to the area under the curves from t=0 to infinity) is the same in all cases, 
provided the other variables are held constant.  Since in service we would mostly be 



concerned with the initial creep rate, then an increase in viscosity would be 
advantageous.  Note that increasing the crosslinking density can increase both young’s 
modulus (# active chain segments increases) and viscosity (leads to increase in Tg) 
making this advantageous for creep control. 
 

 
 
 
** Note: if you just use εσ /=E  vs. Sperling 9.36 you get a different equation for E.  
I’m not sure why this discrepancy comes about.  The results are similar. 
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