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#5.1 

In a pure polymer in the bulk, mers interact only with other mers, on their own or 
adjacent chains.  These interactions can be considered ideal:  there is no change in 
volume associated with mixing the chains (∆Vmix=0)* and there is no mixing enthalpy 
(∆Hmix = 0).  When a polymer chain is present in a solvent, there is in general a swelling 
or contraction of the polymer which occurs; this can be viewed macroscopically as many 
types of rubber swell in the presence of organic solvents.  Alternately, some polymers 
will precipitate out of solution when placed in a solvent.  In either case there is a change 
in the radius of gyration compared to the bulk.  The theta solvent represents the situation 
where there is no swelling or contraction compared to the bulk; it is the worst solvent for 
a polymer which does not cause precipitation.  
 In a theta solvent the increase in volume (excluded volume) associated with 
interpenetration of the solvent between the chains and solvent/mer interaction, is exactly 
balanced by the positive enthalpy of mixing ∆Hmix > 0.  Perhaps a better way to think of 
the problem is to consider the forces on a polymer sphere.  The solvating effect exerts an 
osmotic pressure which tends to swell the polymer.  The enthalpy of mixing can likewise 
be related to a pressure, by considering the equation of state ∆H = T∆S + V∆P + Σµi∆ni.  
Although ∆S is also positive, ∆H > T∆S in the theta solvent.  The last term is zero 
because the stoichiometry is fixed.  Therefore the positive enthalpy of mixing leads to a 
positive pressure on the sphere.  For the theta solvent these two “pressures” on the 
polymer “sphere” balance so there is no change in the radius of gyration relative to the 
bulk.  
 Alternately we can consider the relationship between ∆Hmix and pressure from 
equations 3.25 and 3.21 in Sperling. 
 
* Actually remember that we considered an excluded volume associated with the inability 
of a chain to interpenetrate with itself during its random walk in the bulk; this led to the 
fact that the actual radius of gyration was slightly larger than that given by a random walk 
process [eqn 5.14 vs. eqn 5.12].  But here we are considering excluded volume due to 
mixing only. 
 
 
#5.2 

There are several ways to estimate the radius of gyration and end-to-end distance.  
Two such examples are given here.  If you note that the ratio Rg

2/Mw is roughly constant 
for a given polymer, then from Table 5.4 for polystyrene (Rg

2/Mw)1/2 = 0.275 A 
(mol/g)1/2.  For the given polymer this means Rg =[ [0.275 A (mol/g)1/2]2 * 1E5 g/mol ]1/2 
=  87 A.  Then from equation 3.58, ro = Rg√6 = 213 A. 

Alternately we can use eqn 5.14 in conjunction with Table 5.7.  Then C = 9.85, l 
carbon-carbon bond distance = 1.54 A from lecture #2, and x is in this case the degree of 
polymerization.  The molecular weight for styrene is 104 g/mol, so n = 105/104 ~ 962.  
So rf = (9.85 * 1.542 * 962)1/2  A = 149.9 A ~ 150 A.  Then Rg = rf/√6 = 61.2 A. 
 



#5.6 
This is a fairly straightforward problem.  From equation 5.11, neglecting higher order 
terms, if (dΩ/dΣ)-1 is plotted versus K2, then the intercept is given by (CnMw)-1 and the 
slope is given by Rg

2/3 * (CnMw)-1.  This plot is shown below:  

y = 8E-14x + 0.4289
R2 = 0.9996
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So Mw = (1/0.4289 cm) *(1/10E-5 mol/g cm) = 23315 g/mol 
And Rg

2 = 3 * 10E-5 mol/g cm * 23315 g/mol * 8E-14 cm3 = 5.36 E-17 cm2 = 5355.6 A2 
So Rg = 73.2 A 

Implicit in the equation utilized is the fact that the second virial coefficient, A2 = 
0.  This is probably true for the given situation in that we are distributing a tagged 
polymer which is structurally the same as the host matrix except that it is deuterated.  
This should not effect the mixing too much and thus the system behaves as a pure bulk 
polymer with A2 = 0. 
 
 
#5.7 
 The data in table 5.10 shows two diffusion coefficients for 3-star polymers of the 
same molecular weight at two different temperatures.  Assuming an Arrhenius behavior, 
then D = Doexp(-E/RT).  We are asked to solve for E.  Taking the ratio of this equation at 
two different temperatures cancels Do.  Taking the natural log of both sides and 
rearranging yields:    
 
k*(1/T2 – 1/T1)-1*ln(D1/D2) = E. 
 
8.314 J/molK * (1/(165+273) – 1/(125+273))-1* ln(2.4E-14/1.4E-13) = E 
 
E = 63900 J/mol = 63.9 kJ/mol 
 
To interpret this result takes some creativity.   We can compare it to the thermal energy at 
room temperature for example = RT = 2.45 kJ/mol and find that it is ~ 26 times larger.  
So diffusion is only appreciable at temperatures much higher than room temperature.  We 
can assume that the preexponential factors are the same for the linear and star shaped 
polybutadienes and compare activation energies.  We will use the cases where 
T1=T2=T=125oC, so 
 
E2 = E1 + RTln(D1/D2) = 63.9 kJ/mol + 8.314E-3 kJ/mol K * 398oK * ln(2.4E-14/4.8E-11) 



E2 = 38.1 kJ/mol 
 
Thus the activation energy for the linear polymer is much lower than that for the star 
polymer.  We can interpret this result now by considering how the star polymer would 
have to diffuse in a concentrated (bulk) sample.  To move in a reptative fashion, one of 
the arms of the polymer will need to collapse in line so that the polymer is linear.  This 
substantially reduces the configurational entropy of the polymer resulting in the high 
activation energy.  Note that the activation energy for the linear polymer is still much 
larger than the thermal energy at room temperature. 
 
 
#6.2 
 This was, unfortunately, a very confusing problem if you tried to consider the 
exact models extolled in the reading.  Since the problem called for an estimate, however 
we make the following assumptions. 

1) The growth rates given in Table 6.6 are applicable and give G in units of cm/s for 
T in K and R in J/molK. 

2) The instantaneous nuclei density is fixed with respect to 
temperature/undercooling. 

3) Nuclei grow as spheres isotropically. 
4) The melting point of the polyethylene is 145oC. 

 
Obviously assumptions two and three run completely counter to the models for which the 
growth rates were derived, but without further information on the geometry of the 
lamellae we cannot stick with the model. 
 
With assumptions 2/3, we can estimate the linear distance between nucleation sites to be  
L = 3 34101 cm = 0.046416 cm.  Once a total growth of 0.046416/2 = 0.023208 cm has 
occurred we assume nucleation is complete.  We divide by two as nucleation occurs from 
both adjacent nuclei.  We have reduced the three dimensional problem of growing 
spheres to a one dimensional problem of growing lines.  Note that nz = 30,000 g/mol ÷ 14 
g/mol = 2142.9. 
 
We write the temperature as a function of time T = (145+273 oK) – CR/60 t, with time t 
in seconds, and CR=cooling rate in oK/min.  Then ∆T = 418-T = CR/60 t.  For each of the 
growth rates we calculate the length of growth attained in regimes I and II, by 
substituting T and ∆T into the growth rate equations and integrating over the appropriate 
time integral.  These intervals are… 
 
 
CR (oC/min) Time spent in Region I (s) Time spent in Region II (s) 

1 0 – 960 960 – 1072 
100 0 - 9.6 9.6 – 13.8 

 
 



The results, done with Maple (see pages at the end of this document) are summarized 
below: 
 
Cooling Rate Growth in I (cm) Growth in II (cm) % in I % in II 
1 oC/min 0.06738 0.40137 100 0 

100 oC/min 0.0006738 0.113889 2.9 97.1 

 
The % in each region is calculated by taking the growth in that region and dividing by 
0.023208 cm, as long as the number in that column plus that in the previous column does 
not surpass 0.023208 cm.  If the latter happens, then we know growth finished in the 
regime in question and the % in that regime is 100%  - the entry in the previous column.  
With both of the growth rates, crystallization is done before the third regime is reached.  
With the slower cooling rate it occurs completely in Regime I.  With the faster cooling 
rate it occurs predominantly in regime II. 
 
 
#6.8 
 The theoretical density for a 100% crystalline polymer can be calculated 
considering a single unit cell, since this completely represents the sample via many 
replications and translations of the unit cell.  The hint suggests using Table 6.2 which 
gives the answer in the furthest column.  However it gives the really pertinent 
information in the second column.  It tells us that the stable form has dimensions a,b,c 
given and is orthorhombic.  Orthorhombic means that the unit cell is a rectangular prism 
(the three angles between coordinate axes are all ninety degrees) but a≠b≠c.  The volume 
of the unit cell is just abc since it is a rectangular prism. 
 By considering figure 6.5, we note that there are two C2H4 units per cell.  The 
rationale is as follows.  The unit cell is body-centered, so one chain is completely within 
the unit cell.  The other four chains shown are each shared by four adjacent unit cells, 
thus they each contribute only ¼ of a repeat unit (C2H4); but there are four of them, 4 * ¼ 
= 1.  So the total mass per unit cell in amu is 4*12 + 8 = 56 amu. 
 
ρ = 1 /( 7.147 * 4.945 * 2.547 A3 ) 1024(A3/cm3) * 56 g/(mol Unit Cell) ÷ 6.023 E-23 (unit 
cells)/(mol unit cell) 
ρρρρ = 1.033 g/cm3 
 
This agrees quite well with the value of 1 g/cm3 given in the table. 
 
 



#6.10 
 We can fit the data to equation equation 6.43, which contains all the quantities 
asked for in parts a and b.  If we plot 1/Tf vs. v1, and fit with a second order polynomial, 
the coefficient to v1

0 = 1/Tf
o, the melting point of the pure polymer, the coefficient to v1 is 

RVu/(∆HfV1), and the coefficient to v1
2 is -RVu/(∆HfV1)χ1.  The results of such a fit with 

Excel are shown below. 
 

y = -0.000232x2 + 0.000399x + 0.002868
R2 = 0.991264
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So we find that  
 
Tf

o = 1/0.002868 = 348.7o K = 75.7oC  
 
RVu/(∆HfV1) = 0.000399 K-1 
 
Vu = molar volume of mer = 284 g/mol /(0.99 g/cm3) = 286.87 cm3/mol 
Vl = molar volume of solvent = 73 g/mol /(0.9445 g/cm3) = 77.29 cm3/mol 
 
∆Hf = RVu/0.000399V1 = 8.314 J/molK * (286.67/77.29) ÷ 0.000399K-1 =  
77285.2 J/mol = 77.3 kJ/mol 
 
-RVu/(∆HfV1)χ1 = -0.000232 K-1 
χ1 = 0.000232 K-1 RVu/(∆HfV1) = 0.000232/0.000399 
χχχχ1 = 0.58 
 
Note that since χ1 is positive, the mixing process between the solvent and polymer is 
endothermic, ∆Hf.  The paper from which this problem was obtained is included in a 
handout made for one of the Tuesday night review sessions.   
 
 

Note that you really need 
to have several digits here 
to get accurate 
values…Using 0.002 vs. 
0.002686 gives a 
difference of almost 5o. 

Calculate from picture I emailed out. 



#6.16 
a) Again this data is for polyethylene, so as in problem 6.8 the volume of the unit 
cell is given by the product abc.  A linear plot of volume vs. temperature gives a slope of 
0.01764 A3/K.  

y = 0.01764x + 87.93913
R2 = 0.99979
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Using the average volume over this entire temperature range then gives 
 
α = 1/90.9255 A3 (0.01764 A3/K)  = 1.94 E–4 K-1  
 
Note that if we were interested in a particular temperature range, we would be better 
suited to use the value of volume in that regime obtained from the equation in the graph.  
For example if we wanted α at 200oK, we should use a value of V = 91.47 A3.  Then  
 
α = 1.929 E-3 K-1. 
 
b)  The C-C bonds of the polymer run along the c-axis of the unit cell.  Since these 
covalent bonds are quite stiff compared to the energy required to separate chains (related 
to soft hydrogen bonding/Van der Waals forces) volume expansion if accommodated by 
chain separation rather than interatomic bond stretching. 



Maple Results, question 6.2, Cooling Rate 1oC/min 
 
> T:=(145+273) - CR/60*t; 

 := T  − 418
1

60 CR t  

> dT:=CR/60*t; 

 := dT
1

60 CR t  

> CR:=1; 
 := CR 1  

> nz:=2142.9; 
 := nz 2142.9  

> R:=8.314; 
 := R 8.314  

> GI:=5E13/nz*exp(-7000/(R*T)-1.8E5/(T*dT)); 

 := GI .2333286668 1011 eeee









−  − 841.9533318

1
 − 418 /1 60 t

.1080 108

( ) − 418 /1 60 t t

 

> GII:=3.34E7/nz*exp(-7000/(R*T)-0.9E5/(T*dT)); 

 := GII 15586.35494 eeee









−  − 841.9533318

1
 − 418 /1 60 t

.540 107

( ) − 418 /1 60 t t

 

> evalf(int(GI, t=0..960)); 
.06738085640  

>  
> evalf(int(GII, t=960..1072)); 

.4013739105  

>   



Maple Results, question 6.2, Cooling Rate 100oC/min 
 
> T:=(145+273) - CR/60*t; 

 := T  − 418
1

60 CR t  

> dT:=CR/60*t; 

 := dT
1

60 CR t  

> CR:=100; 
 := CR 100  

> nz:=2142.9; 
 := nz 2142.9  

> R:=8.314; 
 := R 8.314  

> GI:=5E13/nz*exp(-7000/(R*T)-1.8E5/(T*dT)); 

 := GI .2333286668 1011 eeee






−  − 841.9533318

1
 − 418 /5 3 t

108000.0000
( ) − 418 /5 3 t t

 

> GII:=3.34E7/nz*exp(-7000/(R*T)-0.9E5/(T*dT)); 

 := GII 15586.35494 eeee






−  − 841.9533318

1
 − 418 /5 3 t

54000.00000
( ) − 418 /5 3 t t

 

> evalf(int(GI, t=0..9.6)); 
.0006738084992  

>  
> evalf(int(GII, t=9.6..13.8)); 

.1138885699  

>   


