
Chemical Engineering 160/260 
Problem Set #3 Solutions: 
 
1)  Why do most polymers exhibit LCST rather than UCST behavior? 
 
Consider an A B system.  The appearance of UCST vs. LCST behavior can be determined by the 
sign of the enthalpy and entropy terms ∆Hmix and ∆Smix in the free energy of mixing equation: 

 
∆Gmix(%A,T) = ∆Hmix - T∆Smix, 

 
assuming that the dominant temperature dependence of ∆Gmix is from the T term.  If ∆Gmix is less 
than zero, the two components will form a single phase.  If ∆Gmix is greater than zero the 
components will phase segregate.  For most solutions ∆Smix is greater than zero because mixing 
allows increased configurational entropy (more unique ways to arrange the two components A, B 
on a lattice).  Consider a solution with concentration eg 0.5% A and 0.5% B.  If ∆Hmix is also 
greater than zero for this system, (endothermic mixing) then at low temperatures ∆Gmix will be 
greater than zero, at some critical temperature ∆Gmix will be equal to zero and at higher 
temperatures ∆Gmix will be less than zero.  Thus we will see UCST type behavior: a two phase 
region at low temperatures and a single phase region at high temperatures.  If ∆Hmix is less than 
zero we see complete miscibility at all temperatures. 
 For polymers, as Sperling points out, ∆Hmix is usually less than zero and ∆Smix is often 
greater than zero (the exact opposite of the UCST case).  ∆Smix is greater than zero because of 
densification, which leads to a loss of configurational entropy due to a loss of holes or lattice 
sites which would allow more microstates.  Qualitatively, the chains are more locked into a given 
configuration when densification occurs.  ∆Hmix is negative due to exothermic mixing.  Both 
these terms are quite small, but the important point is their signs.  For a given concentration, at 
low temperatures ∆Gmix is negative and a single phase exists.  At higher temperatures ∆Gmix 
becomes positive and a two phase region exists. 
 
 
 
2)  We are asked to discuss the spheres which form when a poly(styrene-co-butadiene) block 
copolymer phase segregates.  The polystyrene blocks have a molecular weight of 20,000 g/mol 
and the butadiene blocks have a molecular weight of 40,000 g/mol.   
 
a)  Size of spheres: 
R = 1.33 αKM1/2 
α = 1.2 
K = 670 E-3 A 
M = 20,000 g/mol 
Substituting in leads to R = 151 A: the spheres have a diameter of 302 Angstroms. 
 
b)  # blocks/sphere? 
 There are two approaches one can think of to obtain this number.  They are both 
estimates, but one is a better approach than the other. 



 
Approach #1:  Assume uniform density in the spheres, use bulk density of polystyrene to 
approximate the total mass within one sphere, and use the given molecular weight of polystyrene 
blocks to obtain the # blocks/sphere. 
 
Vsphere = 4/3πR3 = 1.442 E-17 cm3 
 
Masssphere = ρ Vsphere = 1.06 g/cm3 * 1.442 E-17 cm3 = 1.529 E-17 g  [density from Table 3.2] 
 
# blocks/sphere = Masssphere *  NA ÷ MW = 1.529 E-17 g  * 6.023 E23 blocks/mol ÷ 20,000 g/mol 
 
# blocks/sphere ~ 460 
 
 
Approach #2:  Estimate the radius of gyration of the styrene block and divide the total sphere 
volume by this number. 
 
Using data from Table 3.9 in Sperling, we can obtain <Rg>

2 = 6.6 E-12 cm2 at 34.2o C (theta 
temperature) for polystyrene with a molecular weight of Mw = 7.65 E5 g/mol.  We can assume to 
first approximation that the blocks in the spheres are in a theta solvent because they are mostly 
surrounded by blocks of the same chemical structure.  To be more accurate we would have to 
consider boundary effects.  Since the ratio (<Rg

2>/Mw)1/2 should be roughly constant for a given 
molecular weight of the same polymer in the same solvent we can estimate Rg for the block with 
molecular weight 20,000 g/mol as 
 
<Rg

2>1/2 = [6.6 E-12 cm2 * (20,000 g/mol ÷7.65 E5 g/mol)]1/2 = 4.15 E-7 cm 
 
Rg ~ 41.5 Angstroms 
 
# blocks/sphere ~ Vsphere/Vblock = (Rblock/Rg)

3 = (151/40) 3  = 48 
 
I think that the first approach will give a more accurate number, because the second assumes that 
no other blocks can penetrate into the volume 4/3πR3 assigned to one block.  In fact we know 
that there is a great deal of interpenetration. 
 
c)  #spheres/cm3? 
 Here we need to take into account the fact that much of the space in a cubic centimeter 
will be filled by the matrix butadiene.  The volume of butadiene required for each sphere to 
satisfy the stoichiometry of the block copolymer can be determined using the given molecular 
weights of each block in conjunction with the bulk densities of each polymer, again assuming as 
in approach #1 that these values are valid here. 
 
ρpolystyrene = 1.06 g/cm3 
ρbutadiene = 1.01 g/cm3 
 
The volume ratio of butadiene to polystyrene is thus given by  



80,000 g/mol ÷ 20,000 g/mol * ρpolystyrene ÷ρbutadiene  = 4.198 
 
So for every sphere of polystyrene with volume Vsphere, we must account for 4.198Vsphere volume 
for the matrix.  Thus the number spheres per cm3 is [(1+4.198)Vsphere]

-1 = 1.334 E16 spheres/cm3. 
 
 
 
3)  What is the analytical expression for Xblend for the system of two copolymers 
 (AxB1-x)n/(CyD1-y)n’? 
 
Xblend = ΣcijXij.  This can be solved by inspection using Xblend for the A/(CxD1-x)n as given in 
Sperling.  The result is: 

Xblend = xyXAC + x(1-y)XAD + (1-x)yXBC + (1-x)(1-y)XBD – x(1-x)XAB – y(1-y)XCD 
 
 
 
4)  We are given an equation for the enthalpy of vaporization at 25oC, the boiling point at one 
atmosphere pressure, density, and molecular weight of toluene and asked to calculate its 
solubility parameter at 25oC.   
 
-The solubility parameter can be calculated from the equation δ = (∆E/V)1/2 where V is the molar 
volume and ∆E is the change in internal energy of the material on going from liquid to gas states. 
-Substituting in Tb to the given ∆Hvaporization gives ∆H(25oC) = 9083 cal/mol 
-To relate ∆H to ∆E, consider the  definition of enthalpy: 
 

H = E + PV 
dH = dE + PdV + VdP 

 
The third term is usually negligible because any pressure change occurring would be very small.  
There is however a significant molar volume change on vaporization so the second term is not 
negligible.  We can approximate dV ~ Vvapor since Vvapor >> Vliquid.  We can further assume the 
vapor behaves ideally so that from the ideal gas law  
PVvap = RT.  So 

 
dH ~ dE + PVvap  = dE + RT 

∆E = ∆H –RT = 9083 – 1.987(298) = 8283 cal/mol 
 
The molar volume can be found from the density and molecular weight given as  

 
V = MW/ρ = 105.7 cm3/mol 

δ = (∆E/V)1/2
  = (8283 cal/mol ÷105.7 cm3/mol) 1/2

  ~ 8.9 (cal/cm3) 1/2 
 
 


