Lecture 2 – Linear Systems

This lecture: EE263 material recap + some controls motivation

- Continuous time (physics)
- Linear state space model
- Transfer functions
- Black-box models; frequency domain analysis
- Linearization

Modeling and Analysis

This lecture considers

- Linear models. More detail on modeling in Lecture 7
- Simulation: computing state evolution and output signal
- Stability: does the solution diverge after some time?
- Approximate linear models

Linear Models

- Model is a mathematical representations of a system
 - Models allow simulating the system
 - Models can be used for conceptual analysis
 - Models are never exact
- Linear models
 - Have simple structure
 - Can be analyzed using powerful mathematical tools
 - Can be matched against real data using known procedures
 - Many simple physics models are linear
 - They are just models, not the real systems

State space model

- Generic state space model
 - is described by ODEs
 - e.g., physics-based system model
 - state vector x
 - observation vector y

$$\frac{dx}{dt} = f(x, u, t) \Rightarrow \text{state evolution}$$

 $y = g(x, t) \rightarrow \text{observation}$

 x_1 - velocity V [ft/sec] x_2 - angle of attack α [rad] x_3 - pitch angle θ [rad] x_4 - pitch rate q [rad/sec] $\delta_{\rm e}$ - elevator deflection [deg]

EE392m - Spring 2005 Gorinevsky

Linear state space model

• Linear Time Invariant (LTI) state space model:

$$\frac{dx}{dt} = Ax + Bu \Rightarrow \text{state evolution}$$

$$y = Cx \Rightarrow \text{observations}$$

- Can be integrated analytically or numerically (simulation)
- Can be well analyzed: stability, response

Example: F16 Longitudinal Model											
		$-1.93 \cdot 10^{-2}$	8.82	-32.2	-0.48		0.17				
	dx	$-2.54 \cdot 10^{-4}$	-1.02	0	0.91	. v _	$-2.15 \cdot 10^{-3}$. 11			
	$\frac{dt}{dt}$	0	0	0	1		0				
		$2.95 \cdot 10^{-12}$	0.82	0	-1.08		-0.18				
$y = \begin{bmatrix} 0 & 0 & 57.3 & 0 \end{bmatrix} \cdot x$											

EE392m - Spring 2005 Gorinevsky

Integrating linear autonomous system

$$\frac{dx}{dt} = Ax$$

- Matrix exponential
 - Can be computed in Matlab as expm(A)
 - The definition corresponds to integrating the ODE by Euler method

Example:									
>>A = [-1.93e	-2 8.82	-32.2	-0.58;						
-2.54e	-4 -1.02	0	0.91;						
0	0	0	1;						
2.95e	-12 0.82	0	-1.08];						
>> expm(A)									
ans =									
0.9802	3.1208 -	31.8830	-10.2849						
-0.0002	0.5004	0.0031	0.3604						
-0.0000	0.2216	1.0002	0.6709						
-0.0001	0.3239	0.0007	0.4773						

 $\begin{aligned} x(T + \Delta t) &\approx x(T) + \Delta t A x(t) = (I + \Delta t A) x(T) \\ x(T + n\Delta t) &= (I + \Delta t A)^n x(T) \to \exp(An\Delta t) x(T) \\ \exp(At) &= \lim_{\Delta t \to 0} (I + \Delta t A)^{t/\Delta t} \end{aligned}$

EE392m - Spring 2005 Gorinevsky

Integrating linear autonomous system

Control Engineering

$$\frac{dx}{dt} = Ax, \qquad x(0) = x_0$$

• Initial condition response

%Take A, B, C from the F16 example

 $x(t) = \exp(At)x_0$

TIME

2-7

-0.0022;

-0.1800];

0;

for j = 1:length(t);

Example:

>> k = 0.02

>>

>> G = A + k*B*C;

>> x0 = [0.1700;

Eigenvalues and Stability

• Consider eigenvalues of the matrix A

$$\{\lambda_i\} = \operatorname{eig}(A); \quad \det(I\lambda - A) = 0$$

Example: % take A from % the F16 example >> eig(A) ans = -1.9125 -0.1519 + 0.1143i -0.1519 - 0.1143i 0.0970

• Suppose *A* has all different and nonzero eigenvalues, then

$$A = V \cdot \operatorname{diag}\{\lambda_j\} \cdot V^{-1}$$
$$\exp(At) = V \cdot \operatorname{diag}\{e^{\lambda_j t}\} \cdot V^{-1}$$

- The system solution is exponentially stable if $\operatorname{Re} \lambda_j < 0$
- If *A* has eigenvalues with multiplicity more than 1, things are a bit more complicated: Jordan blocks, polynomials in *t*
- Still the condition of exponentially stability is $\operatorname{Re} \lambda_i < 0$

EE392m - Spring 2005 Gorinevsky

Input-output models

• Black-box models – describe system *P* as an operator

- Historically (50 years ago)
 - Black-box models \rightarrow EE
 - State-space models \rightarrow ME, AA

Linear System (input-output)

• Linearity

$$u_{1}(\cdot) \xrightarrow{P} y_{1}(\cdot) \qquad u_{2}(\cdot) \xrightarrow{P} y_{2}(\cdot)$$
$$au_{1}(\cdot) + bu_{2}(\cdot) \xrightarrow{P} ay_{1}(\cdot) + by_{2}(\cdot)$$

• Linear Time-Invariant systems - LTI

$$u(\cdot - T) \xrightarrow{P} y(\cdot - T)$$

EE392m - Spring 2005 Gorinevsky

Convolution representation

• Convolution integral $y(t) = \int_{-\infty}^{t} h(t - \tau) u(\tau) d\tau$

signal processing y = h * unotation

• Impulse response

$$u(t) = \delta(t) \implies y(t) = h(t)$$

• Step response: u = 1 for t > 0

$$g(t) = \int_0^t h(t-\tau)d\tau = \int_0^t h(\tau)d\tau \qquad h(t) = \frac{d}{dt}g(t)$$

EE392m - Spring 2005 Gorinevsky

Impulse Response for State Space Model

Formal transfer function

- Rational transfer function
 - = IIR (Infinite Impulse Response) model
 - Broad class of input-output linear models

$$a_1 \frac{d^m y}{dt^m} + a_2 \frac{d^{m-1} y}{dt^{m-1}} + \dots + a_{m+1} y = b_1 \frac{d^n u}{dt^n} + b_2 \frac{d^{n-1} u}{dt^{n-1}} + \dots + b_{n+1} u$$

• Differentiation operator $\frac{d}{dt} \to s$

• Formal transfer function – rational function of *s*

$$y = H(s) \cdot u = \frac{N(s)}{D(s)} \cdot u \qquad N(s) = a_1 s^m + \dots + a_m s + a_{m+1}$$
$$D(s) = b_1 s^n + \dots + b_n s + b_{n+1}$$

• For a causal system $m \le n$

EE392m - Spring 2005 Gorinevsky

Poles, Impulse Response $y = \frac{N(s)}{D(s)} \cdot u$ N(s) = 0 - zeros D(s) = 0 - poles

• Expand $D(s) = (s - p_1)^{M_1} \cdot ... \cdot (s - p_K)^{M_K}$

Then
$$y = \frac{N_1(s)}{(s - p_1)^{M_1}} \cdot u + \dots + \frac{N_K(s)}{(s - p_K)^{M_K}} \cdot u$$

• Quasi-polynomial impulse response – see a textbook

$$h(t) = \left(c_{1,1}t^{M_1-1} + \dots + c_{1,M_1+1}\right)e^{p_1t} + \dots + \left(c_{K,1}t^{M_K-1} + \dots + c_{K,M_K+1}\right)e^{p_Kt}$$

• Example: $\frac{d^2y}{dt^2} = u$ Transfer function: $y = \frac{1}{s^2} \cdot u$
Impulse response: $h(t) = v_0t + x_0$

EE392m - Spring 2005 Gorinevsky

Transfer Function for State Space

• Formal transfer function for a state space model

$$\frac{d}{dt} \rightarrow s \qquad \begin{bmatrix} sx &= & Ax + Bu \\ y &= & Cx \end{bmatrix} \qquad \begin{array}{l} y = (sI - A)^{-1}B \cdot u \\ H(s) = C(sI - A)^{-1}B \end{bmatrix}$$

• Characteristic polynomial

$$N(s) = \det(sI - A) = 0$$

Poles \Leftrightarrow det $(sI - A) = 0 \Leftrightarrow$ eigenvalues

- Poles are the same as eigenvalues of the state-space matrix A
- For stability we need Re p_k = Re $\lambda_k < 0$

EE392m - Spring 2005 Gorinevsky

Laplace transform

- Laplace integral transform: $x(t) \rightarrow \hat{x}(s) = \int_{0}^{\infty} x(t)e^{st}dt$
- Laplace transform of the convolution integral yields

$$\hat{y}(s) = H(s)\hat{u}(s) \qquad H(s) = \int_{0}^{\infty} h(t)e^{st}dt$$

- Transfer function: H(s)
 - function of complex variable s
 - analytical in a right half-plane Re $s \ge a$

- for a stable system
$$a \le 0$$

- for an IIR model $H(s) = \frac{N(s)}{D(s)}$ $\frac{dx}{dt} \to s\hat{x}(s)$

EE392m - Spring 2005 Gorinevsky **Control Engineering**

Imag s

Re s

✦

+

Frequency decomposition

• Sinusoids are eigenfunctions of an LTI system: y = H(s)u

• Frequency domain analysis

$$\sum u_k e^{i\omega_k t} \to y = \sum u_k H(i\omega_k) e^{i\omega_k t}$$

EE392m - Spring 2005 Gorinevsky

Frequency domain description

• Frequency domain analysis

- Fourier transform numerical analysis
- u(t) = 0, for t < 0

Laplace transform – complex analysis

$$\widetilde{u}(\omega) = \int_{-\infty}^{\infty} u(t)e^{i\omega t}d\omega = \left(\int_{-\infty}^{\infty} u(t)e^{st}d\omega\right)_{s=i\omega} = \hat{u}(i\omega)$$

EE392m - Spring 2005 Gorinevsky

•

Continuous systems in frequency domain

$$\widetilde{x}(\omega) = \int_{-\infty}^{\infty} x(t) e^{i\omega t} dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{x}(\omega) e^{-i\omega t} d\omega$$

$$y(t) = \int_{-\infty}^{t} h(t-\tau)u(\tau)dt$$

$$H(s) = \int_{0}^{\infty} h(t)e^{st}dt$$
$$\widetilde{y}(\omega) = H(i\omega)\widetilde{u}(\omega)$$

- Fourier transform $[-\infty,\infty] \rightarrow [-\infty,\infty]$
- Inverse Fourier transform
- I/O impulse response model
- Transfer function
- System frequency response

Model Approximation

- Model structure physics, computational
- Determine parameters from data
- Step/impulse responses are close ←→ the input/output models are close
- Example fit step response
- Linearization of nonlinear model

Black-box model from data

• Linear black-box model can be determined from the data, e.g., step response data, or frequency response

- Example problem: fit an IIR model of a given order
- This is called model identification
- Considered in more detail in Lecture 8

EE392m - Spring 2005 Gorinevsky

Linear PDE models

- Include functions of spatial variables
 - electromagnetic fields
 - mass and heat transfer
 - fluid dynamics
 - structural deformations
- Example: sideways heat equation

$$\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}$$
$$T(0) = u; \qquad T(1) = 0$$
$$y = \frac{\partial T}{\partial x}\Big|_{x=1}$$

1

EE392m - Spring 2005 Gorinevsky

Linear PDE System Example

- Heat transfer equation,
 - boundary temperature input *u*
 - heat flux output *y*
- Impulse response and step response
- Transfer function is not rational

Impulse response approximation

- Approximating impulse and step responses by a low order rational transfer function model
- Higher order model can provide very accurate approximation
- Methods:
 - trial and error
 - sampled time response fit,
 e.g., Matlab's prony
 - identification, Lecture 8
 - formal model reduction approaches - advanced

EE392m - Spring 2005 Gorinevsky

Validity of Model Approximation

- Why can we use an approximate model instead of the 'real' model?
- Will the analysis hold?
- The input-output maps of two systems are 'close' if the convolution kernels (impulse responses) are 'close' $u(t) = \int_{0}^{t} h(t \tau)u(\tau)\tau$

$$y(t) = \int_{-\infty}^{\infty} h(t-\tau)u(\tau)\tau$$

- The closed-loop stability impact of the modeling error
 - Control robustness
 - Will be discussed in Lecture 9

Nonlinear map linearization

- Nonlinear detailed model
- Linear conceptual design model
- Differentiation, secant method
- Example: static map linearization

$$y = f(u) \approx \frac{\Delta f}{\Delta u} (u - u_0)$$

Linearization Example: RTP

- RTP Rapid Thermal Processing
- Major semiconductor manufacturing process

EE392m - Spring 2005 Gorinevsky

 $\frac{dT}{dt} = bu - c_1 (T^4 - T_F^4) - c_2 (T - T_F)$

- T part temperature
- u IR heater power
- $T_{\rm F}$ furnace temperature
- Stefan-Boltzmann law nonlinearity
- $T_{\rm F}$ is assumed to be constant

$\frac{dT}{dt} = f(T) + bu \qquad f(T) = -c_1(T^4 - T_F^4) - c_2(T - T_F)$

Linearize around a steady state point

RTP, cont'd

 $\dot{x} = ax + bu + d$ $x = T - T_*$ Linear system with a pole u = -kx p = -(a + bk)

 $T_* = 1000, a = -1.7425, b = 1000, k = 0.01 \rightarrow p = -11.7425$

Simulate performance:

EE392m - Spring 2005 Gorinevsky

Nonlinear state space model linearization

• Linearize the r.h.s. map in a state-space model

$$\dot{x} = f(x, u) \approx \frac{\Delta f}{\Delta x} \underbrace{(x - x_0)}_{q} + \frac{\Delta f}{\Delta u} \underbrace{(u - u_0)}_{v}$$
$$\dot{q} = Aq + Bv$$

• Linearize around an equilibrium $0 = f(x_0, u_0)$

• Secant method
$$\begin{bmatrix} \Delta f \\ \Delta x \end{bmatrix}^{j} = \frac{f(x_{0} + s_{j}, u_{0}) - f(x_{0}, u_{0})}{d_{j}}$$

$$s_{j} = \begin{bmatrix} 0 & \dots & d_{j} & \dots & 0 \end{bmatrix}$$

• This is how Simulink computes linearization

EE392m - Spring 2005 Gorinevsky

Example: F16 Longitudinal Model

$$\frac{dx}{dt} = f(x, u)$$

- State vector *x*
- x_1 velocity V [ft/sec]
- x_2 angle of attack α [rad]
- x_3 pitch angle θ [rad]
- x_4 pitch rate q [rad/sec]
- Control input
- u elevator deflection $\delta_{\rm e}$ [deg].

 $u = \delta_e$ *x*′ δ_{e} $y = 57.3\theta$ $\dot{V} = \frac{1}{m} (F_x \cos \alpha + F_z \sin \alpha)$ $\begin{vmatrix} V \\ \alpha \end{vmatrix}$ $\dot{\alpha} = \frac{1}{mV}(-F_x \sin \alpha + F_z \cos \alpha) + q$ $\dot{q} = \frac{M_y}{I_y}$ $\dot{\theta} = q$ $F_x = rC_{x,t}(\alpha) - mg\sin\theta + T$ *x* = q $F_{z} = rC_{z.t}(\alpha, \delta_{e}) + mg\cos\theta$ $M_v = RC_{m,t}(\alpha, \delta_e)$

For more detail see: Aircraft Control and Simulation by Stevens and Lewis

EE392m - Spring 2005 Gorinevsky

Nonlinear Model of F16

 $\frac{dx}{dt} = f(x, u) \quad \Rightarrow \text{ state evolution}$ $y = g(x) \qquad \Rightarrow \text{ observation}$

- Aircraft models are understood by groups of people
- Could take many man-years worth of effort
- Aerodynamics model is based on empirical data
- *f*(*x*,*u*) available as a computational function can be used without a deep understanding of the model
- The nonlinear model can be used for simulation, or linearized for analysis

EE392m - Spring 2005 Gorinevsky

Linearized Longitudinal Model of F16

• Assume trim condition

$$x_{0} = \begin{bmatrix} V_{0} \\ \alpha_{0} \\ q_{0} \\ \theta_{0} \end{bmatrix} = \begin{bmatrix} 500 \\ 0.0393 \\ 0 \\ 0.0393 \end{bmatrix} - \text{ velocity } V [\text{ft/sec}] \\ - \text{ angle of attack } \alpha \text{ [rad]} \\ - \text{ pitch rate } q \text{ [rad/sec]} \\ - \text{ pitch angle } \theta \text{ [rad]}$$

• Linearize the nonlinear function f(x,u) by a finite difference method (secant method). Step = $\begin{bmatrix} 1 & 0.001 & 0.01 & 0.001 \end{bmatrix}$

$$A = \frac{\Delta f}{\Delta x} = \begin{bmatrix} -1.93 \cdot 10^{-2} & 8.82 & -32.2 & -0.48 \\ -2.54 \cdot 10^{-4} & -1.02 & 0 & 0.91 \\ 0 & 0 & 0 & 1 \\ 2.95 \cdot 10^{-12} & 0.82 & 0 & 1.08 \end{bmatrix} \qquad B = \frac{\Delta f}{\Delta u} = \begin{bmatrix} 0.17 \\ -2.15 \cdot 10^{-3} \\ 0 \\ -0.18 \end{bmatrix}$$

• These are the matrices we considered in the linear F16 model example

EE392m - Spring 2005 Gorinevsky

Simulation-based validation

Simulate with nonlinear model, compare with linear model ulletresults --- nonlinear model

Doublet • response

LTI models - summary

- ODE model
- State space linear model
- Linear system can be described by impulse response or step response
- Linear system can be described by frequency response = Fourier transform of the impulse response
- Linear model approximations can be obtained from more complex models
 - Approximation of a linear model response
 - Linearization of a nonlinear model