
Large Scale 3D Reconstruction by 
Structure from Motion 

Devin Guillory 

Ziang Xie 

 

CS 331B 

7 October 2013 



Overview 

“Rome wasn’t built in a day” 

 

• Overview of SfM 

• Building Rome in a Day 

• Building Rome on a Cloudless Day 

– Differences 

 

 



Motivation 

• Reconstruct cities using hundreds of 
thousands of online photos 

– Previous reconstructions relied on data from 
structured sources, e.g. aerial photographs 

• Much larger models (1-2 orders of magnitude) 

• Commercial applications 

– Photosynth, Google Maps Photo Tours 



Example Result 

http://grail.cs.washington.edu/rome/ 



Structure from Motion (SfM) 

• General Problem Statement 
– Given a set of images with some overlap in views, 

infer the 3D geometry (structure) and camera 
poses/matrices (motion) 

– Usually rigid objects 

– Done using image correspondences (texture) 

• Can solve approximately using SVD 
factorization 

• Bundle adjustment to refine 
 

 



SfM: Simplified Case 

• Given: m images of n fixed 3D points  
 

xij = Pi Xj ,  i = 1, … , m,    j = 1, … , n   
 

• Problem: estimate m projection matrices Pi and n 3D points 
Xj from the mn correspondences xij 
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Factorizing the measurement matrix 

Source: M. Hebert Lazebnik 



Bundle adjustment 

• Non-linear method for refining structure and motion 

• Minimizing reprojection error 
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More Detailed Treatments of SfM 

• http://www.cs.illinois.edu/~slazebni/spring13
/lec18_sfm.pdf 

• http://courses.cs.washington.edu/courses/cse
576/08sp/lectures/Sfm.pdf 

• Multiple View Geometry in Computer Vision, 
Richard Hartley and Andrew Zisserman, 
Cambridge University Press, 2004 

 

 

http://www.cs.illinois.edu/~slazebni/spring13/lec18_sfm.pdf
http://www.cs.illinois.edu/~slazebni/spring13/lec18_sfm.pdf
http://courses.cs.washington.edu/courses/cse576/08sp/lectures/Sfm.pdf
http://courses.cs.washington.edu/courses/cse576/08sp/lectures/Sfm.pdf
http://www.robots.ox.ac.uk/~vgg/hzbook/


Building Rome in a Day 

S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. Seitz and R. 
Szeliski. Communications of the ACM, Vol. 54, No. 10, Pages 105-
112, October 2011 

 



Outline 

• Image preprocessing 

• Matching / finding correspondences 

• SfM 

• System / implementation details throughout 

– Master node / worker node architecture 

– Main contributions of paper 

 

 



System Overview 
Preprocessing 

Building the match graph 

Computing pairwise matches 

Merging points 



Image Preprocessing 

• Images on a central store, distributed to 
cluster nodes on demand (load balanced) 

• On each node 

– For each image on the node 

• Extract focal length metadata (if available) 

• Downsample 

• Extract SIFT descriptors 



Matching: Pairwise Case 

• Match SIFT features using approximate 
nearest neighbors library 

• Features of one image put in k-d tree, features 
from other used as queries 

– Priority queue w/ 200 bin max 

• For each query, take 2 nearest neighbors, if 
d1/d2 < r  accept (points correspond) 

 

 

 



Matching: Optimized Scheme 

• Pairwise matching too expensive (for 100K 
images, need to perform about 5 billion 
comparisons), and wasteful, since most 
images don’t match 

• Heuristic based on whole image similarity to 
generate candidate image pairs 

• Matching scheme alternates between 
proposal and verification steps 

 

 



Matching: Vocabulary Tree Proposal (1) 

• First proposal uses vocabulary trees as proposed by 
Nister and Stewenius 

• images  descriptors  hierarchical k-means 

• Tree defines quantization 

– Built offline with 20K images of Rome 

 



Matching: Vocabulary Tree Proposal (2) 

• Given quantizations of descriptors, then form 
bag-of-words representations of images 

• Also use TF-IDF (term frequency inverse 
document frequency) 



Matching: TF-IDF 



Matching: Vocabulary Tree Proposal (2) 

• Given quantizations of descriptors, then form 
bag-of-words representations of images 

• Also use TF-IDF (term frequency inverse 
document frequency) 

• TF vector computed at nodes for each image, 
and DF vector for each node broadcast at 
master 

• Master then broadcasts combined DF for 
entire set of images 



Matching: Vocabulary Tree Proposal (3) 

• TF-IDF matrices broadcast across network so each node can 
compute dot product of TF-IDF vector of each of its images w/ 
all other images 

• For each image, the first k1 closest images are verified to 
create a sparsely connected match graph 

• The next k2 images are then used to join the connected 
components of the graph (consider those in intersection of 
separate components) 

 



Matching: Verification (1) 

• To try and minimize network transfer of image 
features, use a greedy bin-packing algorithm 

• When node asks for work (to perform 
verification), master node first chooses image-
pairs with features on that node 

• Then assigns image to node with most 
associated pairs until bin full 

 



Matching: Verification (2) 

• Verification then done in 3 steps 

– Match descriptors as previously described 

– Estimate essential/fundamental matrix 

• If matrix estimation succeeds, sufficient 
overlap in views, and matches > threshold, do 
stereo reconstruction and store it 

 



Match Graph: Query Expansion 

• Vocabulary tree gave proposal images for each image 
queried 

• Now query using proposal images 

• Finding all vertices within 2 steps of initial query 
vertex and add to match graph 

• Repeat query expansion 4 times 

 

 



Match Graph: Skeletal Sets 

• Want to first find and reconstruct minimal subset of 
photographs that capture basic connectivity and scene 
geometry 

• Use method by Snavely et. al. (2008) to generate skeletal sets 
– Tries to find minimal set of images that spans reconstruction while 

bounding uncertainty between images  

• Also gives significant speedup by removing redundancies 

 



Merging: Track Generation 

• Up till now only considered image pairs 

• Want to estimate 3D points and merge from more 
views 

• Generate feature tracks for each CC 

– First generate tracks on each node 

– Passed to master node, which assigns each worker a CC to 
stitch tracks together for 



SfM: Incremental Approach 

• First done on CCs of skeletal set 

• Uses incremental approach of Snavely et. al. 
(2006) 

– Pick pair w/ largest number of matches 

– Next add camera with largest number of tracks 

– Repeat 2nd step 

• Run final bundle adjustment 

 



Experiments 

• Run on 62 node cluster, dual quad core processors, 
32GB RAM, 1TB disk space (SSD?), 1GB/sec ethernet 

 



More Results (1) 



More Results (2) 



Limitations 

• Matching still takes significant amount of time 

– Depends a lot on initial distribution of images 
across nodes 

• Track generation, skeletal sets, and SfM 
dominated by few largest components 

• Skeletal sets helps a lot 



Software 

• SIFT++ (Now VLFeat) 

– http://vlfeat.org 

• Multicore Bundle Adjustment (Newer) 

– http://grail.cs.washington.edu/projects/mcba/ 

• Bundler (SfM) 

– http://www.cs.cornell.edu/~snavely/bundler/ 

 



Building Rome on a Cloudless Day 

J. Frahm, P. Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y. Jen, E. 
Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys. "Building Rome on a 
Cloudless Day". ECCV 2010 



Demo 



Cloud vs Cloudless Rome 

• Order of magnitude greater dataset 

• Single Computer vs 62  “equivalent” nodes 

• Comparable computation time  

• GPU-Acceleration 

• Varied Optimization Pipeline 



Cloud vs Cloudless Rome 

• SIFT Vocabulary tree vs GIST Features 

 

• Iconic Images 

 

• Skeletal Graph vs Local Iconic Scene Graph 

• Geo-Tags 



Pipeline 

Clustering 

• Appearance-
Based (GIST) 

Verification 

• ARRSAC 
(SIFT) 

Scene 
Reconstruction 

• Local Iconic 
Image 



Clustering 

Appearance-Based Clustering Model 

  

• GIST Descriptor + Subsampled RGB Image 

• Locality Sensitive Binary Code 

• K-medoids clustering by Hamming Distance 

 



Clustering  



GIST Feature Descriptor 

• Similar to SIFT Descriptor, Global 

 

 

 

 



Locality Sensitive Binary Code 

Binary Coding size reduction 

– 11,778 Bytes to 64 bytes 

 

Enabled GPU Implemented Hamming distance/ 
K-mediods calculation 



K-Medoids Clustering 

• Similar to K-Means, uses datapoints instead of 
averages 

 

• Utilizing Geo-tags to initialize clusters 

 

• 100,000 clusters,  K = Kgeo + Krand  

 



Clusters 



Geometric Verification 

• SIFT Feature Extraction – GPU Implementation 

 

• Putative Feature matches computed on GPU 

 

• ARRSAC Verification of matches 

 



RANdom Sample Consensus (RANSAC) 

1. Select Random Inlier Hypotheses set model 

 

2.  Test model against other points 

 

3. Keep set of inliers if greater than threshold 

 

4. Re-estimate model, repeat 1 

 



ARRSAC 

• Optimized for real-time computation 

 

• Partial depth-first search 

 

• Improved initial hypotheses selection SPRT 

• Checked by Geo-Tags 

 

 



Iconic Image 

• N top images closest to mediod determine 
Iconic Image 

 

• Iconic image represents cluster, most inliers 
with n-1 top images 

 

• Remaining cluster images verified with respect 
to top image 



Iconic Image 



Verified Clusters 

• Checks for N verified images or discards 
cluster 

 

• Discards images with less than M inliers from 
cluster 

 

• N = 4, M = 18 



Verified Cluster  



Verified Cluster 

Discards all images without at least N inliers 



Scene Reconstruction 

• Local Iconic Scene Graph Reconstruction 

– Geo-location Candidate Pairs of Iconic Images 

– KNN Candidate Pairs using GIST Features 

• Geometric Verification 

• 3D point Cloud Generation 



Local Graph Initialization 

• All iconics within s distance set as Candidate 
Pairs  

 

• K-Nearest Neighbor iconics set as Candidate 
Pairs 

 

 



Geometric Verification 

• Candidates are verified according to previous 
step 

 

• ARRSAC Verified Iconics are connected 

 

• Stored a local iconic scene graph, -> distinct 
geographic site 



Local Iconic Scene Graph 

Colosseum Local iconic Scene Graph 



Local Iconic Scene Graphs 

Trevi Fountain 



Incremental 3D Point Cloud 
Generation 

• Per Local Iconic Scene Graph 

 

• Choose highest inlier pair in local graph 

 

• Obtain two-view metric reconstruction, using 
EXIF tags or estimates 

 

• Iterate compute 3D sub-model 



3D Point Cloud Generation 

• Merge sub-models with 3D matches 

 

• Use ARRSAC to transform sub-model merges 



3D Point Cloud Generation 

Iconic – Cluster Image matching 

 

– Use 2D matches with Iconic to determine 3D 
correspondences on model 

 

– ARRSAC determine camera pose non-iconics 



3D Point Cloud Generation 



3D Point Cloud Generation 



Results 



Another Example 



Questions? 





Normalized Hamming Distance 

• Approx: ( 1 – K(x,y)) / 2, Gaussian Kernel 

 

• K(x,y) = Fn(x) * Fn(y)   


