
Large Scale 3D Reconstruction by
Structure from Motion

Devin Guillory

Ziang Xie

CS 331B

7 October 2013

Overview

“Rome wasn’t built in a day”

• Overview of SfM

• Building Rome in a Day

• Building Rome on a Cloudless Day

– Differences

Motivation

• Reconstruct cities using hundreds of
thousands of online photos

– Previous reconstructions relied on data from
structured sources, e.g. aerial photographs

• Much larger models (1-2 orders of magnitude)

• Commercial applications

– Photosynth, Google Maps Photo Tours

Example Result

http://grail.cs.washington.edu/rome/

Structure from Motion (SfM)

• General Problem Statement
– Given a set of images with some overlap in views,

infer the 3D geometry (structure) and camera
poses/matrices (motion)

– Usually rigid objects

– Done using image correspondences (texture)

• Can solve approximately using SVD
factorization

• Bundle adjustment to refine

SfM: Simplified Case

• Given: m images of n fixed 3D points

xij = Pi Xj , i = 1, … , m, j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D points
Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3

Lazebnik

Factorizing the measurement matrix

Source: M. Hebert Lazebnik

Bundle adjustment

• Non-linear method for refining structure and motion

• Minimizing reprojection error

 
2

1 1

,),(
 


m

i

n

j

jiijDE XPxXP

x1j

x2j

x3j

Xj

P1

P2

P3

P1Xj

P2Xj

P3Xj

Lazebnik

More Detailed Treatments of SfM

• http://www.cs.illinois.edu/~slazebni/spring13
/lec18_sfm.pdf

• http://courses.cs.washington.edu/courses/cse
576/08sp/lectures/Sfm.pdf

• Multiple View Geometry in Computer Vision,
Richard Hartley and Andrew Zisserman,
Cambridge University Press, 2004

http://www.cs.illinois.edu/~slazebni/spring13/lec18_sfm.pdf
http://www.cs.illinois.edu/~slazebni/spring13/lec18_sfm.pdf
http://courses.cs.washington.edu/courses/cse576/08sp/lectures/Sfm.pdf
http://courses.cs.washington.edu/courses/cse576/08sp/lectures/Sfm.pdf
http://www.robots.ox.ac.uk/~vgg/hzbook/

Building Rome in a Day

S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. Seitz and R.
Szeliski. Communications of the ACM, Vol. 54, No. 10, Pages 105-
112, October 2011

Outline

• Image preprocessing

• Matching / finding correspondences

• SfM

• System / implementation details throughout

– Master node / worker node architecture

– Main contributions of paper

System Overview
Preprocessing

Building the match graph

Computing pairwise matches

Merging points

Image Preprocessing

• Images on a central store, distributed to
cluster nodes on demand (load balanced)

• On each node

– For each image on the node

• Extract focal length metadata (if available)

• Downsample

• Extract SIFT descriptors

Matching: Pairwise Case

• Match SIFT features using approximate
nearest neighbors library

• Features of one image put in k-d tree, features
from other used as queries

– Priority queue w/ 200 bin max

• For each query, take 2 nearest neighbors, if
d1/d2 < r  accept (points correspond)

Matching: Optimized Scheme

• Pairwise matching too expensive (for 100K
images, need to perform about 5 billion
comparisons), and wasteful, since most
images don’t match

• Heuristic based on whole image similarity to
generate candidate image pairs

• Matching scheme alternates between
proposal and verification steps

Matching: Vocabulary Tree Proposal (1)

• First proposal uses vocabulary trees as proposed by
Nister and Stewenius

• images  descriptors  hierarchical k-means

• Tree defines quantization

– Built offline with 20K images of Rome

Matching: Vocabulary Tree Proposal (2)

• Given quantizations of descriptors, then form
bag-of-words representations of images

• Also use TF-IDF (term frequency inverse
document frequency)

Matching: TF-IDF

Matching: Vocabulary Tree Proposal (2)

• Given quantizations of descriptors, then form
bag-of-words representations of images

• Also use TF-IDF (term frequency inverse
document frequency)

• TF vector computed at nodes for each image,
and DF vector for each node broadcast at
master

• Master then broadcasts combined DF for
entire set of images

Matching: Vocabulary Tree Proposal (3)

• TF-IDF matrices broadcast across network so each node can
compute dot product of TF-IDF vector of each of its images w/
all other images

• For each image, the first k1 closest images are verified to
create a sparsely connected match graph

• The next k2 images are then used to join the connected
components of the graph (consider those in intersection of
separate components)

Matching: Verification (1)

• To try and minimize network transfer of image
features, use a greedy bin-packing algorithm

• When node asks for work (to perform
verification), master node first chooses image-
pairs with features on that node

• Then assigns image to node with most
associated pairs until bin full

Matching: Verification (2)

• Verification then done in 3 steps

– Match descriptors as previously described

– Estimate essential/fundamental matrix

• If matrix estimation succeeds, sufficient
overlap in views, and matches > threshold, do
stereo reconstruction and store it

Match Graph: Query Expansion

• Vocabulary tree gave proposal images for each image
queried

• Now query using proposal images

• Finding all vertices within 2 steps of initial query
vertex and add to match graph

• Repeat query expansion 4 times

Match Graph: Skeletal Sets

• Want to first find and reconstruct minimal subset of
photographs that capture basic connectivity and scene
geometry

• Use method by Snavely et. al. (2008) to generate skeletal sets
– Tries to find minimal set of images that spans reconstruction while

bounding uncertainty between images

• Also gives significant speedup by removing redundancies

Merging: Track Generation

• Up till now only considered image pairs

• Want to estimate 3D points and merge from more
views

• Generate feature tracks for each CC

– First generate tracks on each node

– Passed to master node, which assigns each worker a CC to
stitch tracks together for

SfM: Incremental Approach

• First done on CCs of skeletal set

• Uses incremental approach of Snavely et. al.
(2006)

– Pick pair w/ largest number of matches

– Next add camera with largest number of tracks

– Repeat 2nd step

• Run final bundle adjustment

Experiments

• Run on 62 node cluster, dual quad core processors,
32GB RAM, 1TB disk space (SSD?), 1GB/sec ethernet

More Results (1)

More Results (2)

Limitations

• Matching still takes significant amount of time

– Depends a lot on initial distribution of images
across nodes

• Track generation, skeletal sets, and SfM
dominated by few largest components

• Skeletal sets helps a lot

Software

• SIFT++ (Now VLFeat)

– http://vlfeat.org

• Multicore Bundle Adjustment (Newer)

– http://grail.cs.washington.edu/projects/mcba/

• Bundler (SfM)

– http://www.cs.cornell.edu/~snavely/bundler/

Building Rome on a Cloudless Day

J. Frahm, P. Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y. Jen, E.
Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys. "Building Rome on a
Cloudless Day". ECCV 2010

Demo

Cloud vs Cloudless Rome

• Order of magnitude greater dataset

• Single Computer vs 62 “equivalent” nodes

• Comparable computation time

• GPU-Acceleration

• Varied Optimization Pipeline

Cloud vs Cloudless Rome

• SIFT Vocabulary tree vs GIST Features

• Iconic Images

• Skeletal Graph vs Local Iconic Scene Graph

• Geo-Tags

Pipeline

Clustering

• Appearance-
Based (GIST)

Verification

• ARRSAC
(SIFT)

Scene
Reconstruction

• Local Iconic
Image

Clustering

Appearance-Based Clustering Model

• GIST Descriptor + Subsampled RGB Image

• Locality Sensitive Binary Code

• K-medoids clustering by Hamming Distance

Clustering

GIST Feature Descriptor

• Similar to SIFT Descriptor, Global

Locality Sensitive Binary Code

Binary Coding size reduction

– 11,778 Bytes to 64 bytes

Enabled GPU Implemented Hamming distance/
K-mediods calculation

K-Medoids Clustering

• Similar to K-Means, uses datapoints instead of
averages

• Utilizing Geo-tags to initialize clusters

• 100,000 clusters, K = Kgeo + Krand

Clusters

Geometric Verification

• SIFT Feature Extraction – GPU Implementation

• Putative Feature matches computed on GPU

• ARRSAC Verification of matches

RANdom Sample Consensus (RANSAC)

1. Select Random Inlier Hypotheses set model

2. Test model against other points

3. Keep set of inliers if greater than threshold

4. Re-estimate model, repeat 1

ARRSAC

• Optimized for real-time computation

• Partial depth-first search

• Improved initial hypotheses selection SPRT

• Checked by Geo-Tags

Iconic Image

• N top images closest to mediod determine
Iconic Image

• Iconic image represents cluster, most inliers
with n-1 top images

• Remaining cluster images verified with respect
to top image

Iconic Image

Verified Clusters

• Checks for N verified images or discards
cluster

• Discards images with less than M inliers from
cluster

• N = 4, M = 18

Verified Cluster

Verified Cluster

Discards all images without at least N inliers

Scene Reconstruction

• Local Iconic Scene Graph Reconstruction

– Geo-location Candidate Pairs of Iconic Images

– KNN Candidate Pairs using GIST Features

• Geometric Verification

• 3D point Cloud Generation

Local Graph Initialization

• All iconics within s distance set as Candidate
Pairs

• K-Nearest Neighbor iconics set as Candidate
Pairs

Geometric Verification

• Candidates are verified according to previous
step

• ARRSAC Verified Iconics are connected

• Stored a local iconic scene graph, -> distinct
geographic site

Local Iconic Scene Graph

Colosseum Local iconic Scene Graph

Local Iconic Scene Graphs

Trevi Fountain

Incremental 3D Point Cloud
Generation

• Per Local Iconic Scene Graph

• Choose highest inlier pair in local graph

• Obtain two-view metric reconstruction, using
EXIF tags or estimates

• Iterate compute 3D sub-model

3D Point Cloud Generation

• Merge sub-models with 3D matches

• Use ARRSAC to transform sub-model merges

3D Point Cloud Generation

Iconic – Cluster Image matching

– Use 2D matches with Iconic to determine 3D
correspondences on model

– ARRSAC determine camera pose non-iconics

3D Point Cloud Generation

3D Point Cloud Generation

Results

Another Example

Questions?

Normalized Hamming Distance

• Approx: (1 – K(x,y)) / 2, Gaussian Kernel

• K(x,y) = Fn(x) * Fn(y)

