
Hi everyone. Today we'll be discussing how to implement dynamic programming solutions.

In particular, we're going to focus on when the ordering of the subproblems is somewhat

unusual. Many of the examples you've seen in class involve just filling a table from left to

right, or row-by-row, which is something I'm confident you'd be able to figure out how to

code on your own. Dynamic programming problems share a lot in common with greedy

problems in that figuring out the algorithm and proving it's correct is often much harder

than actually coding it up. The problems we'll look at today, though, will focus a bit more

on implementation issues than on the theory side.

1

The first problem we'll look at today is finding a tree cut. Here we have a tree with

undirected edges where we've had a root node marked for us in red. The edges in this tree

are all weighted, and you want to find the minimum-weight cut that separates the root

from all the leaves.

2

So what's the optimal substructure that we can use for this problem? Well, let's look at

one subtree of the root, which we've circled, and whose root we've marked in orange.

Now, in order to make sure that we've cut all the leaves from this subtree off from the root,

we can either cut the orange-red edge, or we can find the minimum-weight cut that

separates the orange node from all the leaves in the circled subtree. This gives us one

subproblem per node, where each subproblem is the minimum-weight cut for the subtree

rooted at that node.

3

Now, what's the ordering in which we need to solve the subproblems? Well, the

subproblems of size one are the leaves, so those are the ones we want to solve first. The

root is the one with the most dependencies, so that comes last. In general, as long as all

the children of a node are solved before that node, we're fine. One way we can ensure this

is just to implement our solution recursively. In fact, we don't even need memoization,

since the fact that we're using a tree means that each subproblem is used exactly once.

However, if we really want to try a bottom-up approach, we can use a graph search to label

the nodes in such a way as to guarantee that the children come before the parent. Hearing

this should make you immediately think of topological sort, and indeed that's the right way

to order the subproblems whenever you define a DP on a DAG. Our case is more special

than that, though, so we can get away with other traversals, including say a breadth first

search.

4

Here's the specification slide for this problem. There are a couple things I'd like to point

out. First is that we've restricted our graphs to be fairly small; this is intentional so that you

can choose whichever graph representation you find most convenient to work with. While

you should convince yourself that this problem can be done in linear time, you might find it

more convenient to pay the extra factor of n to use an adjacency matrix instead of an

adjacency list. Next, if you decide to use topological sort to order the nodes, keep in mind

that topsort, strictly speaking, does not work on undirected graphs. However, each edge

has an implicit direction in that it points away from the root, so you can make topological

sort work by only considering the direction that points from visited nodes to unvisited

nodes.

5

For the second problem for today, we're going to go over how to compute the permanent

of a matrix. The formal definition of the permanent of a matrix A is given here. This

definition may look familiar to some of you, because it's very similar to the definition of a

determinant, which is much more widely known. Basically, the determinant of a matrix is

the signed sum of the product of permutations of entries in the matrix, while the

permanent is the unsigned sum. It's interesting to note that we know how to compute a

determinant in polynomial time using row reduction, but computing the permanent is

known to be NP-hard. It turns out that those alternating signs have a huge impact on the

tractability of the problem.

6

To make sure we understand exactly what the permanent is, let's look at an example.

Remember that we said that we're summing over all permutations of entries. What does

that mean? Well, let's look at one permutation, say 1, 4, 2, 3. What this means is we go

through the rows one-by-one, and we take the first entry, then the fourth, then the second,

and finally the third, and we multiply all those entries together. This gives us one product

per permutation. Then we sum over these n factorial permutations to get our answer. If

we were taking the determinant, we would multiply each product with the sign of the

permutation before summing, but in the permanent, we sum them all directly.

7

So we could solve this problem in factorial time by enumerating all the permutations. But

can we do better? It turns out we can, using a trick that's very similar to the traveling

salesman trick we saw yesterday in class. First, let's write our permanent in terms of

permanents of smaller matrices. What we can do is take the expression we had before and

group it into n parts, the first being all the permutations that start with 1, the next being all

the ones that start with 2, and so on. If we do this, then we see that each part contributes

an amount equal to its corresponding entry in the first row, times the permanent of the

submatrix you get if you delete the first row and the corresponding column. For example,

the part that corresponds to permutations that start with 2 here equals the red entry times

the permanent of the purple submatrix. Now, if we were just to use this recurrence

directly, we'd still have to do factorial work. However, we can notice that submatrices can

show up multiple times. For example, the submatrix that's left over for all permutations

that start with (1, 2) is the same as the submatrix that's left over for all the ones that start

with (2, 1). In general, to figure out what submatrix we want if we've fixed the first k

entries of our permutation, we don't actually care about the order in which those entries

were fixed. All we care about is which entries were fixed, because they correspond to the

columns we have to delete. Remember that because of the way we're doing this

expansion, we're always deleting the first k rows. This means that we actually only have

2^n subproblems, one for each possible submatrix that we create in this manner.

8

So, how do we organize these subproblems? Well, we can use a bit mask where the 1s

indicate the columns that we still have, and the 0s are columns that we've deleted. This

means that our full permanent corresponds to the bit mask of all 1s, and to find

subproblems, we just subtract those 1s out. These numbers are then the numbers that we

use to index into our table. You can see that they range from 1 to 2^n – 1, which

corresponds to all nonempty subsets of n elements.

9

Now how do we fill this table? In the DP that Keith presented yesterday, we saw that we

need to solve the subproblems in increasing order of subset size. If you really want, you

can make this ordering explicit by looping over the size of the subsets, and then

enumerating all subsets of a given size. I've provided what basically amounts to magic code

that does this for you. But I'd also like to point out that there is nothing wrong with

implementing a recursive solution that uses memoization. In fact, the solution I wrote up

does exactly that. The important thing is to take advantage of the mapping from subsets to

integers to be able to create an efficient lookup table without having to resort to hashing

tricks.

10

Here's the specification slide for this problem. Notice that you should only print out the

last 9 digits of the permanent of the matrix. This is because the permanent can get really

big, so we'd like to avoid overflow problems. Instead, use 64-bit integers to store your

intermediate values, and make sure to mod by a billion after every arithmetic operation

you make.

11

