
Hi everyone.  Today we'll be discussing how to implement dynamic programming solutions.  

In particular, we're going to focus on when the ordering of the subproblems is somewhat 

unusual.  Many of the examples you've seen in class involve just filling a table from left to 

right, or row-by-row, which is something I'm confident you'd be able to figure out how to 

code on your own.  Dynamic programming problems share a lot in common with greedy 

problems in that figuring out the algorithm and proving it's correct is often much harder 

than actually coding it up.  The problems we'll look at today, though, will focus a bit more 

on implementation issues than on the theory side.
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The first problem we'll look at today is finding a tree cut.  Here we have a tree with 

undirected edges where we've had a root node marked for us in red.  The edges in this tree 

are all weighted, and you want to find the minimum-weight cut that separates the root 

from all the leaves.
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So what's the optimal substructure that we can use for this problem?  Well, let's look at 

one subtree of the root, which we've circled, and whose root we've marked in orange.  

Now, in order to make sure that we've cut all the leaves from this subtree off from the root, 

we can either cut the orange-red edge, or we can find the minimum-weight cut that 

separates the orange node from all the leaves in the circled subtree.  This gives us one 

subproblem per node, where each subproblem is the minimum-weight cut for the subtree

rooted at that node.
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Now, what's the ordering in which we need to solve the subproblems?  Well, the 

subproblems of size one are the leaves, so those are the ones we want to solve first.  The 

root is the one with the most dependencies, so that comes last.  In general, as long as all 

the children of a node are solved before that node, we're fine.  One way we can ensure this 

is just to implement our solution recursively.  In fact, we don't even need memoization, 

since the fact that we're using a tree means that each subproblem is used exactly once.  

However, if we really want to try a bottom-up approach, we can use a graph search to label 

the nodes in such a way as to guarantee that the children come before the parent.  Hearing 

this should make you immediately think of topological sort, and indeed that's the right way 

to order the subproblems whenever you define a DP on a DAG.  Our case is more special 

than that, though, so we can get away with other traversals, including say a breadth first 

search.
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Here's the specification slide for this problem.  There are a couple things I'd like to point 

out.  First is that we've restricted our graphs to be fairly small; this is intentional so that you 

can choose whichever graph representation you find most convenient to work with.  While 

you should convince yourself that this problem can be done in linear time, you might find it 

more convenient to pay the extra factor of n to use an adjacency matrix instead of an 

adjacency list.  Next, if you decide to use topological sort to order the nodes, keep in mind 

that topsort, strictly speaking, does not work on undirected graphs.  However, each edge 

has an implicit direction in that it points away from the root, so you can make topological 

sort work by only considering the direction that points from visited nodes to unvisited 

nodes.
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For the second problem for today, we're going to go over how to compute the permanent 

of a matrix.  The formal definition of the permanent of a matrix A is given here.  This 

definition may look familiar to some of you, because it's very similar to the definition of a 

determinant, which is much more widely known.  Basically, the determinant of a matrix is 

the signed sum of the product of permutations of entries in the matrix, while the 

permanent is the unsigned sum.  It's interesting to note that we know how to compute a 

determinant in polynomial time using row reduction, but computing the permanent is 

known to be NP-hard.  It turns out that those alternating signs have a huge impact on the 

tractability of the problem.
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To make sure we understand exactly what the permanent is, let's look at an example.  

Remember that we said that we're summing over all permutations of entries.  What does 

that mean?  Well, let's look at one permutation, say 1, 4, 2, 3.  What this means is we go 

through the rows one-by-one, and we take the first entry, then the fourth, then the second, 

and finally the third, and we multiply all those entries together.  This gives us one product 

per permutation.  Then we sum over these n factorial permutations to get our answer.  If 

we were taking the determinant, we would multiply each product with the sign of the 

permutation before summing, but in the permanent, we sum them all directly.
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So we could solve this problem in factorial time by enumerating all the permutations.  But 

can we do better?  It turns out we can, using a trick that's very similar to the traveling 

salesman trick we saw yesterday in class.  First, let's write our permanent in terms of 

permanents of smaller matrices.  What we can do is take the expression we had before and 

group it into n parts, the first being all the permutations that start with 1, the next being all 

the ones that start with 2, and so on.  If we do this, then we see that each part contributes 

an amount equal to its corresponding entry in the first row, times the permanent of the 

submatrix you get if you delete the first row and the corresponding column. For example, 

the part that corresponds to permutations that start with 2 here equals the red entry times 

the permanent of the purple submatrix.  Now, if we were just to use this recurrence 

directly, we'd still have to do factorial work.  However, we can notice that submatrices can 

show up multiple times.  For example, the submatrix that's left over for all permutations 

that start with (1, 2) is the same as the submatrix that's left over for all the ones that start 

with (2, 1).  In general, to figure out what submatrix we want if we've fixed the first k 

entries of our permutation, we don't actually care about the order in which those entries 

were fixed.  All we care about is which entries were fixed, because they correspond to the 

columns we have to delete.  Remember that because of the way we're doing this 

expansion, we're always deleting the first k rows.  This means that we actually only have 

2^n subproblems, one for each possible submatrix that we create in this manner.
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So, how do we organize these subproblems?  Well, we can use a bit mask where the 1s 

indicate the columns that we still have, and the 0s are columns that we've deleted.  This 

means that our full permanent corresponds to the bit mask of all 1s, and to find 

subproblems, we just subtract those 1s out.  These numbers are then the numbers that we 

use to index into our table.  You can see that they range from 1 to 2^n – 1, which 

corresponds to all nonempty subsets of n elements.
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Now how do we fill this table?  In the DP that Keith presented yesterday, we saw that we 

need to solve the subproblems in increasing order of subset size.  If you really want, you 

can make this ordering explicit by looping over the size of the subsets, and then 

enumerating all subsets of a given size.  I've provided what basically amounts to magic code 

that does this for you.  But I'd also like to point out that there is nothing wrong with 

implementing a recursive solution that uses memoization.  In fact, the solution I wrote up 

does exactly that.  The important thing is to take advantage of the mapping from subsets to 

integers to be able to create an efficient lookup table without having to resort to hashing 

tricks.
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Here's the specification slide for this problem.  Notice that you should only print out the 

last 9 digits of the permanent of the matrix.  This is because the permanent can get really 

big, so we'd like to avoid overflow problems.  Instead, use 64-bit integers to store your 

intermediate values, and make sure to mod by a billion after every arithmetic operation 

you make.
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