
Hi everyone.  Today we'll be covering just one problem, the minimum spanning tree 

problem, but we'll be writing up three different solutions to it.  The first two solutions will 

be Kruskal's and Prim's algorithms exactly as described in lecture, while the third will be a 

variation on Prim's that uses less space but is far more involved to code.
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Since we've covered the problem in detail in class, we can start with the specification slide.  

Notice that the largest graphs we're considering as input are quite sparse.  Dense graphs 

tend to be less interesting, because if the graph is sufficiently dense, then just using an 

adjacency matrix and running Prim's without any special data structures gives you an 

optimal algorithm.
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First, let's review how Kruskal's algorithm works.  First, we take all the edges in the graph 

and sort them in increasing order of weight.  Then, we go over the edges one at a time and 

add them to our set of edges if and only if the two endpoints are in different connected 

components.  Notice that we don't need any of the standard representations of a graph; 

instead, we can get away with a simple array of edges, and a specialized data structure for 

keeping track of what component each node is in.
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This specialized data structure needs to support two operations.  First, it needs to be able 

to find the component that a given node belongs to.  Second, it needs to be able to merge 

two components together.  The data structure we'll use to back these operations is the one 

we learned about in lecture, namely, the disjoint set forest.
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The lecture notes provide an inspiration for this data structure; today, we're going to 

implement it with all the bells and whistles.  Proving its runtime complexity is painful, but 

coding it up is not.  All you need to do is maintain a parent and a rank for every node.  You 

can do this either with a struct or with a couple arrays.  The Wikipedia entry on Disjoint Set 

Forests provides very readable pseudocode if you want a more detailed starting point.
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Now let's move on to Prim's algorithm.  In this algorithm, we pick an arbitrary start node, 

say the green one here, and add all its adjacent edges to a priority queue.  Then we extract 

the minimum weight edge from the priority queue, and each time we come across an edge 

that leads to a new node, we add it to our set, and then we add all of that node's adjacent 

edges that we haven't seen yet to the queue.  For Prim's algorithm, the adjacency list 

representation will come in handy, since we need to be able to find all the edges incident to 

a node in order to add them to a queue.
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Both C++ and Java have an implementation of a priority queue backed by an array-based 

heap in their standard libraries.  All you need to do in order to use them is to add a 

comparator to your struct.  Notice that even though we're implementing operator-less-

than, we're using a greater-than sign.  This is because C++ priority queues are max-heaps, 

so if we want a min-heap, our comparator needs to go in the opposite direction.
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This is the way we make classes comparable in Java.  Notice that here we return an int, not 

a boolean.  A negative number indicates that we're smaller than the function argument, a 

positive number indicates that we're larger, and 0 indicates we're equal.  A convenient 

shorthand for doing this is to take our weight and subtract the argument's weight.  Be 

warned, though, that this shorthand is susceptible to overflow, so make sure the numbers 

you're comparing aren't too far apart.
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Now we're going to make a modification to Prim's algorithm to make it more space-

efficient.  Instead of inserting edges into our priority queue, we can insert nodes, and have 

the priority be equal to the minimum weight of an edge that connects that node to our 

tree so far.  In order to make this work, though, we need to be able to decrease the priority 

of a node that's already in the queue.  In theory, this can be done in logarithmic time, but it 

turns out this function isn't supported by the language default containers.  The reason for 

this is it's a pain in the neck.  Let's try it for ourselves by implementing our own heap that 

supports insert, extract-min, and decrease-key.  As a reminder, a min heap is a dense binary 

tree that we fill layer by layer from left to right, where every node satisfies the heap 

property that it's smaller than all of its children.  We can represent the heap implicitly by 

using a one-indexed array.
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If we do that, then we have convenient ways of accessing the parent and children of a given 

node, namely by using division and multiplication respectively.  Some of you may know 

from systems courses that division and multiplication are relatively expensive operations, 

so since we're always dividing or multiplying by two, we can use bit shifts instead for a little 

extra performance.  On the other hand, modern compilers can do this replacement for you, 

so if you're not comfortable reading bit arithmetic, feel free to use the more common 

arithmetic operators.
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Now, how do we insert a node into the heap?  The first thing we do is we add it to the next 

spot, which is at the end of the array.  We then compare it to its parent, and if it's smaller 

than its parent, we swap it upward.
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We repeat the process
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until its parent is smaller than it is, at which point we stop, knowing that we've preserved 

the heap property everywhere.
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Now, to extract the minimum node, which is the 0 at the top of the heap, we first swap it 

with the last element in the heap.  This new last element is going to be our return value, 

and we're not going to consider it as part of our heap anymore.  Now, we have to fix the 

new root of the tree, as it may be larger than its children.  We compare it with its children, 

and if it's larger than either of them, then we swap it with its smaller child.
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We continue the process
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until it is larger than all of its children.  Notice that at this position, the 4 only has one child, 

namely, the 8; the 0 is no longer a part of our heap, and is going to be cut off and returned 

as the minimum, so the 4 is in the right place.
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Now, let's look at what happens when we try to change the priority of an element in the 

heap, say the 3 from before to a 0.  Notice that for our application, we only want to be able 

to decrease the priority, since we're using it to store the minimum weight edge that leads 

us to each new node.  Now, if we lower a node's priority, we can be sure that it will stay 

smaller than its children.  However, we run the risk of making it smaller than its parent.  

That means in order to preserve the heap property, we have to swap it upwards until it 

finds a suitable parent, much like we did for insertion.  At first glance, it looks like getting 

log-time performance is straightforward.  But we've neglected to mention one detail, which 

is we need to FIND the entry in the heap whose priority we want to decrease.  If we don't 

store any additional information, we have no choice but to iterate over the whole heap in 

order to find the entry.  So in order to get log-time decrease key, we need to maintain a 

map from elements to their locations in the heap.  For our application, the things we'll be 

putting in the heap are going to be nodes that are 0-indexed up to n (exclusive), so we can 

use an array of size n to store the locations of the n nodes.  If we do this, though, we need 

to make sure that we update this map whenever we swap entries in the heap.
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