
Hi everyone. Today we'll be covering randomized algorithms, implementing one Las Vegas

algorithm and one Monte Carlo algorithm. The problems I've picked out for today don't

require much code, so there's a good chance we'll finish early. I promise this has nothing

to do with the fact that I'm behind on grading. None whatsoever. Nope.

1

Anyhow, for our Las Vegas algorithm, we're pretty much obligated to implement Quicksort.

Before we start coding, though, let's take a bit of time to figure out why Quicksort beats

the other n log n sorting algorithms in practice. One advantage Quicksort has over

Mergesort, for example, is that Quicksort can be done in place. This means we don't have

to copy pieces of our array around like we had to in order to make the merge step of

Mergesort work. All of the complexity of making Quicksort run in place is found in the

partition step, so let's go over how to perform an in-place partition. Here, let's suppose

that we want to partition using the first element, 3, as our pivot. Now, I'd like to refer you

all to Keith's Problem Set Advice handout, which covered how to partition an array in place

based on a predicate. We're going to use that algorithm here. Our predicate will be true if

the array element is bigger than the pivot, and false otherwise.

2

Once we're done using that algorithm, our array will look something like this. The first

element will be our pivot, followed by a block of elements that are all NO larger than our

pivot, followed by all the elements that ARE larger than our pivot. Then all we need to do

to put our pivot in the right place is to swap it with the last element of the red block,

3

like so. Now, what if we want to choose a pivot besides the first element in the array?

Well, before we run this partitioning algorithm, we can simply swap the pivot we want with

the first element in the array.

4

With this in-place partition algorithm under your belt, implementing the rest of Quicksort

should be easy. Here's the problem spec slide. Notice that we ARE going to have to deal

with repeated numbers.

5

Now, you're going to be choosing your pivots at random. I've included this slide as a quick

reference for how to generate a random integer between 0 and n, as well as how to

generate a random floating point number between 0 and 1. As usual, C++ is on top, and

Java is on the bottom. You might notice that the top is actually C code. There IS a random

library in C++'s STL, but it's far more than what we'll need for today.

6

Now, the test data I've provided you with for Quicksort includes a test case that looks

something like this. This case is actually kind of annoying for Quicksort to handle, because

no matter what pivot you choose, you'll always end up with a bad split. That is, unless you

modify the predicate you use in your partition subroutine. What you want to do in this

case is whenever you run into entries that are identical to your pivot, you want to send

roughly half of those entries to the left and the other half to the right. I'll let you figure out

how to do this on your own. One trick that you might be tempted to try is to make a coin

flip every time you come across an entry that matches your pivot. Keep in mind, though,

that generating random numbers is expensive, so see if you can come up with something

less computationally intensive.

7

Now for our Monte Carlo problem. This problem is actually a three-dimension problem,

but since that's hard to make slides for, all of these slides are going to be in two

dimensions. In this problem, we can imagine making a snow sculpture out of a bunch of

spherical snowballs, potentially overlapping, and we want to know how much snow is in

the sculpture. In other words, we want to compute the volume of the union of a bunch of

spheres. Now, how would we do this? You're welcome to try to work out a closed-form

solution to this. It turns out it's already a pain with 2 spheres, and it only gets worse from

there.

8

Well, let's see if we can approximate it. We could try to compute a Riemann sum. But it

turns out this is still a hairy problem, because we need to figure out where each of the

spheres begins and ends in each slice we make.

9

So let's try going up a dimension and integrating there. One thing we can do is we can

divide our space into a bunch of cells, and then test the center of each cell to see whether

it's inside our sculpture. Then we just add up the volumes of the cells whose centers are

inside our sculpture. That gets rid of a lot of the nasty math, since testing whether a point

is in the sculpture is equivalent to testing whether it's in any of the spheres. This is

something we could implement, but before we commit to it, we should stop and think

about how accurate this answer is going to be. If we wanted to only test a million points,

we'd need to split our volume into a 100x100x100 grid. The issue is that while a million

points sounds like a lot, our grid ends up being pretty coarse because we have to split them

across 3 dimensions.

10

This issue comes up a lot in geometric problems and is known as the curse of

dimensionality. This curse says that as the dimension of your problem goes up, either your

runtime explodes, or your accuracy gets shot. Now the question is, can we get around this

curse of dimensionality for this particular problem?

11

It turns out there is, at least to some extent. There's another way of integrating using a

Monte Carlo randomization scheme. Choose a point at random inside a bounding box of

the volume you care about. Then check whether it actually lies inside the sculpture.

Imagine a random variable equal to 0 if you land outside the sculpture, and 1 if you land

inside it. Notice that the ratio of the volume you care about to the volume of the bounding

box is exactly the expectation of this random variable. What this means is you can

approximate the volume of the sculpture by just running this test over and over again, and

averaging the results. If you apply a lot of math that's beyond the scope of this class, you'll

be able to see that the relative error of this approximation is inversely proportional to the

square root of the number of trials. Notice that this is independent of the dimensionality

of the problem.

12

So here's the specification for the snow sculpture problem. Here, we've guaranteed that

the sculpture will live inside a particular 10x10x10 box, which you can use as your bounding

box for your Monte Carlo integration. This problem is a little different from the other

problems we've had before in that you're not guaranteed to match the output files we gave

you even if your algorithm is implemented correctly. You're going to need to experiment

with different numbers of trials to see how many trials you need in order to reliably match

the output files. It may help to print out the unrounded volume estimates while you're

experimenting to see how much variation there is in your answer.

13

