
Hi everyone.  Today we'll be covering randomized algorithms, implementing one Las Vegas 

algorithm and one Monte Carlo algorithm.  The problems I've picked out for today don't 

require much code, so there's a good chance we'll finish early.  I promise this has nothing 

to do with the fact that I'm behind on grading.  None whatsoever.  Nope.
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Anyhow, for our Las Vegas algorithm, we're pretty much obligated to implement Quicksort.  

Before we start coding, though, let's take a bit of time to figure out why Quicksort beats 

the other n log n sorting algorithms in practice.  One advantage Quicksort has over 

Mergesort, for example, is that Quicksort can be done in place.  This means we don't have 

to copy pieces of our array around like we had to in order to make the merge step of 

Mergesort work.  All of the complexity of making Quicksort run in place is found in the 

partition step, so let's go over how to perform an in-place partition.  Here, let's suppose 

that we want to partition using the first element, 3, as our pivot.  Now, I'd like to refer you 

all to Keith's Problem Set Advice handout, which covered how to partition an array in place 

based on a predicate.  We're going to use that algorithm here.  Our predicate will be true if 

the array element is bigger than the pivot, and false otherwise.
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Once we're done using that algorithm, our array will look something like this.  The first 

element will be our pivot, followed by a block of elements that are all NO larger than our 

pivot, followed by all the elements that ARE larger than our pivot.  Then all we need to do 

to put our pivot in the right place is to swap it with the last element of the red block,
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like so.  Now, what if we want to choose a pivot besides the first element in the array?  

Well, before we run this partitioning algorithm, we can simply swap the pivot we want with 

the first element in the array.

4



With this in-place partition algorithm under your belt, implementing the rest of Quicksort 

should be easy.  Here's the problem spec slide.  Notice that we ARE going to have to deal 

with repeated numbers.
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Now, you're going to be choosing your pivots at random.  I've included this slide as a quick 

reference for how to generate a random integer between 0 and n, as well as how to 

generate a random floating point number between 0 and 1.  As usual, C++ is on top, and 

Java is on the bottom.  You might notice that the top is actually C code.  There IS a random 

library in C++'s STL, but it's far more than what we'll need for today.
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Now, the test data I've provided you with for Quicksort includes a test case that looks 

something like this.  This case is actually kind of annoying for Quicksort to handle, because 

no matter what pivot you choose, you'll always end up with a bad split.  That is, unless you 

modify the predicate you use in your partition subroutine.  What you want to do in this 

case is whenever you run into entries that are identical to your pivot, you want to send 

roughly half of those entries to the left and the other half to the right.  I'll let you figure out 

how to do this on your own.  One trick that you might be tempted to try is to make a coin 

flip every time you come across an entry that matches your pivot.  Keep in mind, though, 

that generating random numbers is expensive, so see if you can come up with something 

less computationally intensive.

7



Now for our Monte Carlo problem.  This problem is actually a three-dimension problem, 

but since that's hard to make slides for, all of these slides are going to be in two 

dimensions.  In this problem, we can imagine making a snow sculpture out of a bunch of 

spherical snowballs, potentially overlapping, and we want to know how much snow is in 

the sculpture.  In other words, we want to compute the volume of the union of a bunch of 

spheres.  Now, how would we do this?  You're welcome to try to work out a closed-form 

solution to this.  It turns out it's already a pain with 2 spheres, and it only gets worse from 

there.
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Well, let's see if we can approximate it.  We could try to compute a Riemann sum.  But it 

turns out this is still a hairy problem, because we need to figure out where each of the 

spheres begins and ends in each slice we make.
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So let's try going up a dimension and integrating there.  One thing we can do is we can 

divide our space into a bunch of cells, and then test the center of each cell to see whether 

it's inside our sculpture.  Then we just add up the volumes of the cells whose centers are 

inside our sculpture.  That gets rid of a lot of the nasty math, since testing whether a point 

is in the sculpture is equivalent to testing whether it's in any of the spheres.  This is 

something we could implement, but before we commit to it, we should stop and think 

about how accurate this answer is going to be.  If we wanted to only test a million points, 

we'd need to split our volume into a 100x100x100 grid.  The issue is that while a million 

points sounds like a lot, our grid ends up being pretty coarse because we have to split them 

across 3 dimensions.
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This issue comes up a lot in geometric problems and is known as the curse of 

dimensionality.  This curse says that as the dimension of your problem goes up, either your 

runtime explodes, or your accuracy gets shot.  Now the question is, can we get around this 

curse of dimensionality for this particular problem?
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It turns out there is, at least to some extent.  There's another way of integrating using a 

Monte Carlo randomization scheme.  Choose a point at random inside a bounding box of 

the volume you care about.  Then check whether it actually lies inside the sculpture.  

Imagine a random variable equal to 0 if you land outside the sculpture, and 1 if you land 

inside it.  Notice that the ratio of the volume you care about to the volume of the bounding 

box is exactly the expectation of this random variable.  What this means is you can 

approximate the volume of the sculpture by just running this test over and over again, and 

averaging the results.  If you apply a lot of math that's beyond the scope of this class, you'll 

be able to see that the relative error of this approximation is inversely proportional to the 

square root of the number of trials.  Notice that this is independent of the dimensionality 

of the problem.
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So here's the specification for the snow sculpture problem.  Here, we've guaranteed that 

the sculpture will live inside a particular 10x10x10 box, which you can use as your bounding 

box for your Monte Carlo integration.  This problem is a little different from the other 

problems we've had before in that you're not guaranteed to match the output files we gave 

you even if your algorithm is implemented correctly.  You're going to need to experiment 

with different numbers of trials to see how many trials you need in order to reliably match 

the output files.  It may help to print out the unrounded volume estimates while you're 

experimenting to see how much variation there is in your answer.
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