Intractable Problems
 Part Three

Announcements

- Problem Set Six due right now.
- Due Wednesday with a late day.
- Final project distributed at the end of lecture; details later today.

Please evaluate this course on Axess.

Your feedback really makes a difference.

Outline for Today

- Pseudopolynomial Time
- A quick clarification from last time.
- Another Algorithm for 0/1 Knapsack
- A totally different approach to knapsack.
- FPTAS
- Extremely efficient approximation algorithms.

The 0/1 Knapsack Problem

The 0/1 Knapsack Problem

- You are given a list of n items with weights w_{1}, \ldots, w_{n} and values ν_{1}, \ldots, v_{n}.
- You have a bag (knapsack) that can carry W total weight.
- Weights are assumed to be integers.
- Question: What is the maximum value of items that you can fit into the knapsack?
- This problem is known to be NP-hard.

From Last Time

- There is a DP algorithm that runs in time $\mathrm{O}(n W)$, where n is the total number of items and W is the knapsack capacity.
- Claim: This is not a polynomial-time algorithm.
- Rationale: The number W takes $\Theta(\log W)$ bits to write out, so the runtime is exponential in the number of bits of W.
- Question: Why is it polynomial in n ?

Input Structure

$W_{n} \quad V_{n}$

Pseudopolynomial Time

- It takes $\Omega(n)$ bits to write out a list of n items, so an algorithm that works with n items and has runtime $\mathrm{O}\left(n^{k}\right)$ runs in polynomial time.
- It takes $\Theta(\log n)$ bits to write out the number n, so an algorithm that takes in the number n and has runtime $O\left(n^{k}\right)$ runs in exponential time.

A Different Approach to 0/1 Knapsack

Parameterized Complexity

- Recall: a problem is fixed-parameter tractable if there is an algorithm for it with runtime $\mathrm{O}(f(k) \cdot p(n))$ for some function $f(k)$ and polynomial $p(n)$.
- We can pick many different parameters for the same problem and get different algorithms.
- Useful: Depending on which parameters are fixed and can vary, different algorithms can be appropriate.

A Different Algorithm

- Our current algorithm asked the following question:

What is the maximum value that fits in X space given just the first k items?

- Here is a different way to think about the problem:

What is the minimum space needed to make X value with the first k items?

- Can solve 0/1 knapsack by answering this question for all possible profits and finding the highest value that can fit into the knapsack.

A Recurrence Relation

- Let $\operatorname{OPT}(k, X)$ be the minimum space necessary to store exactly X value with the first k items. (and ∞ if it's not possible to do so)
- Claim: $\operatorname{OPT}(k, X)$ satisfies this recurrence:
$\operatorname{OPT}(k, X)=\left\{\begin{array}{cl}0 & \text { if } k=0 \text { and } X=0 \\ \infty & \text { if } k=0 \text { and } X>0 \\ O P T(k-1, X) & \text { if } v_{k}>X \\ \min \left\{\begin{array}{c}\text { OPT }(k-1, X), \\ w_{k}+O P T\left(k-1, X-v_{k}\right)\end{array}\right\} & \text { otherwise }\end{array}\right.$
- Let V denote the maximum possible value obtainable $\left(V=v_{1}+v_{2}+\ldots+v_{n}\right)$.

Let DP be an $(n+1) \times(V+1)$ table.
Set DP[0][0] $=0$.
For $X=1$ to V : Set $\operatorname{DP}[0][X]=\infty$
For $k=1$ to n, for $X=1$ to V :
If $v_{k}>X$, set $\operatorname{DP}[k][X]=\operatorname{DP}[k-1][X]$.
Else, set DP[k][X]=min \{
DP[k-1][X], $w_{k}+\operatorname{DP}[k-1]\left[X-v_{k}\right]$.
\}
For $X=V$ to 0 : if $\mathrm{DP}[n][X] \leq W$, return X.

Comparing Algorithms

- Brute-force algorithm: $\mathrm{O}\left(2^{n} n\right)$
- First DP algorithm: $\mathrm{O}(n W)$.
- This DP algorithm: O(nV).
- Can use first DP algorithm if capacity is fixed and n will grow large.
- Can use second DP algorithm if total value is fixed and n will grow large.

An Interesting Observation

Approximation Schemes

- Let P be an optimization problem. Let X^{*} be the value of the optimal answer for P.
- Let A be an algorithm parameterized over two quantities:
- The input to the problem.
- An accuracy parameter $\varepsilon \in(0,1]$.
- A is called an approximation scheme iff it produces a feasible answer X to P satisfying

$$
(1-\varepsilon) X^{*} \leq X
$$

Our Algorithm

- Choose some integer k in terms of ε (we'll discuss how later on.)
- Let $v_{i}^{\prime}=\left\lfloor v_{i} / k\right\rfloor$ for all v_{i}.
- Use the value-based DP algorithm to find the value of the optimal solution for the problem instance using values v_{i}^{\prime} and the same weights as before.
- Return k times this value.

Our Algorithm

- Choose $\boldsymbol{k}=\boldsymbol{\varepsilon} \boldsymbol{v}_{\text {max }} / \boldsymbol{n}$.
- Let $v_{i}^{\prime}=\left\lfloor v_{i} / k\right\rfloor$ for all v_{i}.
- Use the value-based DP algorithm to find the value of the optimal solution for the problem instance using values v_{i}^{\prime} and the same weights as before.
- Return k times this value.

The Math, Part I

- For any feasible solution S to the original problem, let $c(S)$ denote the value of the items in S using the original values and $c^{\prime}(S)$ denote the value of the items in S using the reduced values.
- Let S^{*} be the optimal solution to the original problem and $S^{1^{*}}$ be the optimal solution to the reduced values.
- Note: Optimal solution to the original problem is $c\left(S^{*}\right)$, and our approximation returns $k c^{\prime}\left(S^{\prime *}\right)$.

The Math, Part II

- We want to bound the difference of the optimal solution and our estimate, which is given by $c\left(S^{*}\right)-k c^{\prime}\left(S^{\prime *}\right)$.
- First, note that $c^{\prime}\left(S^{\prime *}\right) \geq c^{\prime}\left(S^{*}\right)$.
- Rationale: $S^{* *}$ is the optimal solution to the reduced problem, so its value in the reduced problem is at least the value of any solution in the reduced problem, including S^{*}.
- Therefore:

$$
c\left(S^{*}\right)-k c^{\prime}\left(S^{\prime *}\right) \leq c\left(S^{*}\right)-k c^{\prime}\left(S^{*}\right)
$$

The Math, Part III

- What is $c\left(S^{*}\right)-k c^{\prime}\left(S^{*}\right)$?
- Note that

$$
\begin{aligned}
c\left(S^{*}\right)-k c^{\prime}\left(S^{*}\right) & =\sum_{i \in S^{*}} v_{i}-k \sum_{i \in S^{*}}\left\lfloor\frac{v_{i}}{k}\right\rfloor \\
& =\sum_{i \in S^{*}}\left(v_{i}-k\left\lfloor\frac{v_{i}}{k}\right\rfloor\right) \\
& <\sum_{i \in S^{*}} k \\
& =n k
\end{aligned}
$$

- So $c\left(S^{*}\right)-k c^{\prime}\left(S^{*}\right) \leq n k$

The Math, Part IV

- For notational simplicity, let $X^{*}=c\left(S^{*}\right)$ and let $X=k c^{\prime}\left(S^{\prime *}\right)$. This means that X^{*} is the optimal solution and X is our solution.
- From before, $X^{*}-X \leq n k$, so $X^{*}-n k \leq X$.
- Goal: Choose k so that $(1-\varepsilon) X^{*} \leq X$.
- Note: If $n k \leq \varepsilon X^{*}$, then

$$
(1-\varepsilon) X^{*}=X^{*}-\varepsilon X^{*} \leq X^{*}-n k \leq X
$$

The Math, Part V

- If $k n \leq \varepsilon X^{*}$, then $(1-\varepsilon) X^{*} \leq X$ and we are done.
- So choose k so that $k \leq \varepsilon X^{*} / n$.
- Let $v_{\max }$ be the value of the highest-value item that fits into the knapsack.
- Then $X^{*} \geq \nu_{\text {max }}$. Set $k=\boldsymbol{\varepsilon} \boldsymbol{v}_{\text {max }} / \boldsymbol{n}$ to get

$$
k=\varepsilon \nu_{\max } / n \leq \varepsilon X^{*} / n
$$

as required.

The Runtime

- For any k, the runtime is $\mathrm{O}(n V / k)$.
- Since $k=\varepsilon \nu_{\max } / n$, the runtime is $\mathrm{O}\left(n^{2} V / \varepsilon v_{\max }\right)$.
- Note that $V \leq n \nu_{\max }$, so the runtime is $\mathbf{O}\left(\boldsymbol{n}^{3} / \varepsilon\right)$.
- A fully polynomial-time approxiximation scheme (or FPTAS) is an approximation scheme whose runtime is a polynomial in the input size and $1 / \varepsilon$.
- This is about as good as it gets if $\boldsymbol{P} \neq \boldsymbol{N P}$!

Why This Matters

- Some (but not all) NP-hard problems can be approximated using FPTAS's.
- Even if $\mathbf{P} \neq \mathbf{N P}$, can still approximate the answer to arbitrary precision in polynomial time.
- If you can settle for an approximate solution, you can often find very fast polynomial-time algorithms.

Dealing with Intractability

- To review:
- If you need an exact answer, you can often do better than brute-forcing the answer.
- If you need an exact answer, you can often find parameterized algorithms that are efficient for your setup.
- If you can settle for an approximate answer, you can sometimes find efficient approximation algorithms.
- Intractable problems are not always as scary as they might seem!

Next Time

- Where to Go From Here
- Further Topics in Algorithms
- Additional Courses in Algorithms
- Final Thoughts!

The Final Project

The Final Project

- Choose and complete two of the three problems.
- Please only submit answers to two problems; you're welcome to do all three, but we will only grade two.
- Each problem combines two of the techniques from the course, so solving two problems demonstrates an understanding of four techniques from the course.
- Please work independently. Collaboration is not allowed on this project.
- Please do not use outside sources. Refer to the handout for more details.
- Course staff can answer clarifying questions about the problems, but we will not offer as much help as normal.

Good Luck!

