
  

Intractable Problems
Part Three



  

Announcements

● Problem Set Six due right now.
● Due Wednesday with a late day.

● Final project distributed at the end of 
lecture; details later today.



  

Please evaluate this course on Axess.

Your feedback really makes a difference.



  

Outline for Today

● Pseudopolynomial Time
● A quick clarification from last time.

● Another Algorithm for 0/1 Knapsack
● A totally different approach to knapsack.

● FPTAS
● Extremely efficient approximation 

algorithms.



  

The 0/1 Knapsack Problem



  

The 0/1 Knapsack Problem

● You are given a list of n items with 
weights w₁, …, wₙ and values v₁, …, vₙ.

● You have a bag (knapsack) that can carry 
W total weight.

● Weights are assumed to be integers.
● Question: What is the maximum value of 

items that you can fit into the knapsack?
● This problem is known to be NP-hard.



  

From Last Time

● There is a DP algorithm that runs in time 
O(nW), where n is the total number of 
items and W is the knapsack capacity.

● Claim: This is not a polynomial-time 
algorithm.
● Rationale: The number W takes Θ(log W) bits 

to write out, so the runtime is exponential in 
the number of bits of W.

● Question: Why is it polynomial in n?



  

Input Structure

w₁ v₁ w₂ v₂ … … wₙ vₙ W



  

Pseudopolynomial Time

● It takes Ω(n) bits to write out a list of n 
items, so an algorithm that works with n 
items and has runtime O(nk) runs in 
polynomial time.

● It takes Θ(log n) bits to write out the 
number n, so an algorithm that takes in 
the number n and has runtime O(nk) runs 
in exponential time.



  

A Different Approach to 0/1 Knapsack



  

Parameterized Complexity

● Recall: a problem is fixed-parameter 
tractable if there is an algorithm for it 
with runtime O(f(k)·p(n)) for some 
function f(k) and polynomial p(n).

● We can pick many different parameters 
for the same problem and get different 
algorithms.

● Useful: Depending on which parameters 
are fixed and can vary, different 
algorithms can be appropriate.



  

A Different Algorithm

● Our current algorithm asked the following 
question:

What is the maximum value that fits in
X space given just the first k items? 

● Here is a different way to think about the 
problem:

What is the minimum space needed to 
make X value with the first k items?

● Can solve 0/1 knapsack by answering this 
question for all possible profits and finding the 
highest value that can fit into the knapsack.



  

A Recurrence Relation

● Let OPT(k, X) be the minimum space necessary to 
store exactly X value with the first k items. (and ∞ 
if it's not possible to do so)

● Claim: OPT(k, X) satisfies this recurrence:

● Let V denote the maximum possible value 
obtainable (V = v₁ + v₂ + … + vₙ).

OPT(k, X )={
0 if k=0and X=0
∞ if k=0and X>0

OPT (k−1, X ) if vk>X

min{ OPT (k−1, X ),
wk+OPT (k−1, X−vk)} otherwise



  

Let DP be an (n + 1) × (V + 1) table.

Set DP[0][0] = 0.

For X = 1 to V: Set DP[0][X] = ∞

For k = 1 to n, for X = 1 to V:

If vₖ > X, set DP[k][X] = DP[k – 1][X].

Else, set DP[k][X] = min {
DP[k – 1][X],  wₖ + DP[k – 1][X – vₖ].

}

For X = V to 0: if DP[n][X] ≤ W, return X.

Let DP be an (n + 1) × (V + 1) table.

Set DP[0][0] = 0.

For X = 1 to V: Set DP[0][X] = ∞

For k = 1 to n, for X = 1 to V:

If vₖ > X, set DP[k][X] = DP[k – 1][X].

Else, set DP[k][X] = min {
DP[k – 1][X],  wₖ + DP[k – 1][X – vₖ].

}

For X = V to 0: if DP[n][X] ≤ W, return X.

OPT (k, X )={
0 if k=0and X=0
∞ if k=0and X>0

OPT (k−1, X ) if vk> X

min { OPT (k−1, X ) ,
wk+OPT (k−1, X−vk)} otherwise



  

Comparing Algorithms

● Brute-force algorithm: O(2nn)
● First DP algorithm: O(nW).
● This DP algorithm: O(nV).
● Can use first DP algorithm if capacity is 

fixed and n will grow large.
● Can use second DP algorithm if total 

value is fixed and n will grow large.



  

An Interesting Observation



  

Approximation Schemes

● Let P be an optimization problem.  Let X* be 
the value of the optimal answer for P.

● Let A be an algorithm parameterized over two 
quantities:
● The input to the problem.
● An accuracy parameter ε ∈ (0, 1].

● A is called an approximation scheme iff it 
produces a feasible answer X to P satisfying

(1 – ε)X* ≤ X       



  

Our Algorithm

● Choose some integer k in terms of ε   
(we'll discuss how later on.)

● Let v'i = ⌊vi / k⌋ for all vi.

● Use the value-based DP algorithm to find 
the value of the optimal solution for the 
problem instance using values v'i and the 
same weights as before.

● Return k times this value. 



  

Our Algorithm

● Choose k = εvmax / n.

● Let v'i = ⌊vi / k⌋ for all vi.

● Use the value-based DP algorithm to find 
the value of the optimal solution for the 
problem instance using values v'i and the 
same weights as before.

● Return k times this value. 



  

The Math, Part I

● For any feasible solution S to the original 
problem, let c(S) denote the value of the items 
in S using the original values and c'(S) denote 
the value of the items in S using the reduced 
values.

● Let S* be the optimal solution to the original 
problem and S'* be the optimal solution to the 
reduced values.

● Note: Optimal solution to the original problem 
is c(S*), and our approximation returns kc'(S'*).



  

The Math, Part II

● We want to bound the difference of the 
optimal solution and our estimate, which 
is given by c(S*) - kc'(S'*).

● First, note that c'(S'*) ≥ c'(S*).
● Rationale: S'* is the optimal solution to the 

reduced problem, so its value in the reduced 
problem is at least the value of any solution 
in the reduced problem, including S*.

● Therefore:

c(S*) - kc'(S'*) ≤ c(S*) - kc'(S*)   



  

The Math, Part III

● What is c(S*) - kc'(S*)?
● Note that

● So c(S*) - kc'(S'*) ≤ nk

c (S*)−kc'(S*) = ∑
i∈S*

vi−k ∑
i∈S*

⌊
vi

k
⌋

= ∑
i∈S*

(vi−k ⌊
vi

k
⌋)

< ∑
i∈S*

k              

= nk                 



  

The Math, Part IV

● For notational simplicity, let X* = c(S*) 
and let X = kc'(S'*).  This means that X* 
is the optimal solution and X is our 
solution.

● From before, X* - X ≤ nk, so X* - nk ≤ X.
● Goal: Choose k so that (1 – ε)X* ≤ X.
● Note: If nk ≤ εX*, then

(1 – ε)X* = X* - εX* ≤ X* - nk ≤ X    



  

The Math, Part V

● If kn ≤ εX*, then (1 – ε)X* ≤ X and we are 
done.

● So choose k so that k ≤ εX* / n.

● Let vmax be the value of the highest-value 
item that fits into the knapsack.

● Then X* ≥ vmax.  Set k = εvmax / n to get

k = εvmax / n ≤ εX* / n   

as required.



  

The Runtime

● For any k, the runtime is O(nV / k).

● Since k = εvmax / n, the runtime is
O(n2V / εvmax).

● Note that V ≤ nvmax, so the runtime is O(n3 / ε).

● A fully polynomial-time approxiximation 
scheme (or FPTAS) is an approximation 
scheme whose runtime is a polynomial in the 
input size and 1 / ε.

● This is about as good as it gets if P ≠ NP!



  

Why This Matters

● Some (but not all) NP-hard problems can 
be approximated using FPTAS's.

● Even if P ≠ NP, can still approximate the 
answer to arbitrary precision in 
polynomial time.

● If you can settle for an approximate 
solution, you can often find very fast 
polynomial-time algorithms.



  

Dealing with Intractability

● To review:
● If you need an exact answer, you can often do 

better than brute-forcing the answer.
● If you need an exact answer, you can often find 

parameterized algorithms that are efficient for 
your setup.

● If you can settle for an approximate answer, 
you can sometimes find efficient approximation 
algorithms.

● Intractable problems are not always as 
scary as they might seem!



  

Next Time

● Where to Go From Here
● Further Topics in Algorithms
● Additional Courses in Algorithms
● Final Thoughts!



  

The Final Project



  

The Final Project

● Choose and complete two of the three problems.

● Please only submit answers to two problems; you're 
welcome to do all three, but we will only grade two.

● Each problem combines two of the techniques from the 
course, so solving two problems demonstrates an 
understanding of four techniques from the course.

● Please work independently.  Collaboration is not 
allowed on this project.

● Please do not use outside sources.  Refer to the 
handout for more details.

● Course staff can answer clarifying questions about the 
problems, but we will not offer as much help as 
normal.



  

Good Luck!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

