
  

Intractable Problems
Part Three



  

Announcements

● Problem Set Six due right now.
● Due Wednesday with a late day.

● Final project distributed at the end of 
lecture; details later today.



  

Please evaluate this course on Axess.

Your feedback really makes a difference.



  

Outline for Today

● Pseudopolynomial Time
● A quick clarification from last time.

● Another Algorithm for 0/1 Knapsack
● A totally different approach to knapsack.

● FPTAS
● Extremely efficient approximation 

algorithms.



  

The 0/1 Knapsack Problem



  

The 0/1 Knapsack Problem

● You are given a list of n items with 
weights w₁, …, wₙ and values v₁, …, vₙ.

● You have a bag (knapsack) that can carry 
W total weight.

● Weights are assumed to be integers.
● Question: What is the maximum value of 

items that you can fit into the knapsack?
● This problem is known to be NP-hard.



  

From Last Time

● There is a DP algorithm that runs in time 
O(nW), where n is the total number of 
items and W is the knapsack capacity.

● Claim: This is not a polynomial-time 
algorithm.
● Rationale: The number W takes Θ(log W) bits 

to write out, so the runtime is exponential in 
the number of bits of W.

● Question: Why is it polynomial in n?



  

Input Structure

w₁ v₁ w₂ v₂ … … wₙ vₙ W



  

Pseudopolynomial Time

● It takes Ω(n) bits to write out a list of n 
items, so an algorithm that works with n 
items and has runtime O(nk) runs in 
polynomial time.

● It takes Θ(log n) bits to write out the 
number n, so an algorithm that takes in 
the number n and has runtime O(nk) runs 
in exponential time.



  

A Different Approach to 0/1 Knapsack



  

Parameterized Complexity

● Recall: a problem is fixed-parameter 
tractable if there is an algorithm for it 
with runtime O(f(k)·p(n)) for some 
function f(k) and polynomial p(n).

● We can pick many different parameters 
for the same problem and get different 
algorithms.

● Useful: Depending on which parameters 
are fixed and can vary, different 
algorithms can be appropriate.



  

A Different Algorithm

● Our current algorithm asked the following 
question:

What is the maximum value that fits in
X space given just the first k items? 

● Here is a different way to think about the 
problem:

What is the minimum space needed to 
make X value with the first k items?

● Can solve 0/1 knapsack by answering this 
question for all possible profits and finding the 
highest value that can fit into the knapsack.



  

A Recurrence Relation

● Let OPT(k, X) be the minimum space necessary to 
store exactly X value with the first k items. (and ∞ 
if it's not possible to do so)

● Claim: OPT(k, X) satisfies this recurrence:

● Let V denote the maximum possible value 
obtainable (V = v₁ + v₂ + … + vₙ).

OPT(k, X )={
0 if k=0and X=0
∞ if k=0and X>0

OPT (k−1, X ) if vk>X

min{ OPT (k−1, X ),
wk+OPT (k−1, X−vk)} otherwise



  

Let DP be an (n + 1) × (V + 1) table.

Set DP[0][0] = 0.

For X = 1 to V: Set DP[0][X] = ∞

For k = 1 to n, for X = 1 to V:

If vₖ > X, set DP[k][X] = DP[k – 1][X].

Else, set DP[k][X] = min {
DP[k – 1][X],  wₖ + DP[k – 1][X – vₖ].

}

For X = V to 0: if DP[n][X] ≤ W, return X.

Let DP be an (n + 1) × (V + 1) table.

Set DP[0][0] = 0.

For X = 1 to V: Set DP[0][X] = ∞

For k = 1 to n, for X = 1 to V:

If vₖ > X, set DP[k][X] = DP[k – 1][X].

Else, set DP[k][X] = min {
DP[k – 1][X],  wₖ + DP[k – 1][X – vₖ].

}

For X = V to 0: if DP[n][X] ≤ W, return X.

OPT (k, X )={
0 if k=0and X=0
∞ if k=0and X>0

OPT (k−1, X ) if vk> X

min { OPT (k−1, X ) ,
wk+OPT (k−1, X−vk)} otherwise



  

Comparing Algorithms

● Brute-force algorithm: O(2nn)
● First DP algorithm: O(nW).
● This DP algorithm: O(nV).
● Can use first DP algorithm if capacity is 

fixed and n will grow large.
● Can use second DP algorithm if total 

value is fixed and n will grow large.



  

An Interesting Observation



  

Approximation Schemes

● Let P be an optimization problem.  Let X* be 
the value of the optimal answer for P.

● Let A be an algorithm parameterized over two 
quantities:
● The input to the problem.
● An accuracy parameter ε ∈ (0, 1].

● A is called an approximation scheme iff it 
produces a feasible answer X to P satisfying

(1 – ε)X* ≤ X       



  

Our Algorithm

● Choose some integer k in terms of ε   
(we'll discuss how later on.)

● Let v'i = ⌊vi / k⌋ for all vi.

● Use the value-based DP algorithm to find 
the value of the optimal solution for the 
problem instance using values v'i and the 
same weights as before.

● Return k times this value. 



  

Our Algorithm

● Choose k = εvmax / n.

● Let v'i = ⌊vi / k⌋ for all vi.

● Use the value-based DP algorithm to find 
the value of the optimal solution for the 
problem instance using values v'i and the 
same weights as before.

● Return k times this value. 



  

The Math, Part I

● For any feasible solution S to the original 
problem, let c(S) denote the value of the items 
in S using the original values and c'(S) denote 
the value of the items in S using the reduced 
values.

● Let S* be the optimal solution to the original 
problem and S'* be the optimal solution to the 
reduced values.

● Note: Optimal solution to the original problem 
is c(S*), and our approximation returns kc'(S'*).



  

The Math, Part II

● We want to bound the difference of the 
optimal solution and our estimate, which 
is given by c(S*) - kc'(S'*).

● First, note that c'(S'*) ≥ c'(S*).
● Rationale: S'* is the optimal solution to the 

reduced problem, so its value in the reduced 
problem is at least the value of any solution 
in the reduced problem, including S*.

● Therefore:

c(S*) - kc'(S'*) ≤ c(S*) - kc'(S*)   



  

The Math, Part III

● What is c(S*) - kc'(S*)?
● Note that

● So c(S*) - kc'(S'*) ≤ nk

c (S*)−kc'(S*) = ∑
i∈S*

vi−k ∑
i∈S*

⌊
vi

k
⌋

= ∑
i∈S*

(vi−k ⌊
vi

k
⌋)

< ∑
i∈S*

k              

= nk                 



  

The Math, Part IV

● For notational simplicity, let X* = c(S*) 
and let X = kc'(S'*).  This means that X* 
is the optimal solution and X is our 
solution.

● From before, X* - X ≤ nk, so X* - nk ≤ X.
● Goal: Choose k so that (1 – ε)X* ≤ X.
● Note: If nk ≤ εX*, then

(1 – ε)X* = X* - εX* ≤ X* - nk ≤ X    



  

The Math, Part V

● If kn ≤ εX*, then (1 – ε)X* ≤ X and we are 
done.

● So choose k so that k ≤ εX* / n.

● Let vmax be the value of the highest-value 
item that fits into the knapsack.

● Then X* ≥ vmax.  Set k = εvmax / n to get

k = εvmax / n ≤ εX* / n   

as required.



  

The Runtime

● For any k, the runtime is O(nV / k).

● Since k = εvmax / n, the runtime is
O(n2V / εvmax).

● Note that V ≤ nvmax, so the runtime is O(n3 / ε).

● A fully polynomial-time approxiximation 
scheme (or FPTAS) is an approximation 
scheme whose runtime is a polynomial in the 
input size and 1 / ε.

● This is about as good as it gets if P ≠ NP!



  

Why This Matters

● Some (but not all) NP-hard problems can 
be approximated using FPTAS's.

● Even if P ≠ NP, can still approximate the 
answer to arbitrary precision in 
polynomial time.

● If you can settle for an approximate 
solution, you can often find very fast 
polynomial-time algorithms.



  

Dealing with Intractability

● To review:
● If you need an exact answer, you can often do 

better than brute-forcing the answer.
● If you need an exact answer, you can often find 

parameterized algorithms that are efficient for 
your setup.

● If you can settle for an approximate answer, 
you can sometimes find efficient approximation 
algorithms.

● Intractable problems are not always as 
scary as they might seem!



  

Next Time

● Where to Go From Here
● Further Topics in Algorithms
● Additional Courses in Algorithms
● Final Thoughts!



  

The Final Project



  

The Final Project

● Choose and complete two of the three problems.

● Please only submit answers to two problems; you're 
welcome to do all three, but we will only grade two.

● Each problem combines two of the techniques from the 
course, so solving two problems demonstrates an 
understanding of four techniques from the course.

● Please work independently.  Collaboration is not 
allowed on this project.

● Please do not use outside sources.  Refer to the 
handout for more details.

● Course staff can answer clarifying questions about the 
problems, but we will not offer as much help as 
normal.



  

Good Luck!
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