Intractable Problems Part Two

Announcements

- Problem Set Five graded; will be returned at the end of lecture.
- Extra office hours today after lecture from 4PM - 6PM in Clark S250.
- Reminder: Final project goes out on Monday; we recommend not using a late day on Problem Set Six unless necessary.

Please evaluate this course on Axess.

Your feedback really makes a difference.

Outline for Today

- 0/1 Knapsack
- An NP-hard problem that isn't as hard as it might seem.
- Fixed-Parameter Tractability
- What's the real source of hardness in an NP-hard problem?
- Finding Long Paths
- A use case for fixed-parameter tractability.

The 0/1 Knapsack Problem

The 0/1 Knapsack Problem

The 0/1 Knapsack Problem

- You are given a list of n items with weights w_{1}, \ldots, w_{n} and values ν_{1}, \ldots, v_{n}.
- You have a bag (knapsack) that can carry W total weight.
- Weights are assumed to be integers.
- Question: What is the maximum value of items that you can fit into the knapsack?
- This problem is known to be NP-hard.

A Naïve Solution

- One option: Try all possible subsets of the items and find the feasible set with the largest total value.
- How many subsets are there?
- Answer: $\mathbf{2}^{\mathbf{n}}$.
- Subsets can be generated in $\mathrm{O}(n)$ time each.
- Total runtime is $\mathbf{O}\left(2^{n} n\right)$.
- Slightly better than TSP, but still not particularly good!

A Greedy Solution

- Sort items by their "unit value:" v_{k} / w_{k}.
- For all items in descending unit value:
- If that item will fit in the knapsack, add it to the knapsack.
- Does this algorithm always return an optimal solution?
- Unfortunately, no; in fact, this algorithm can be arbitrarily bad!

A Recurrence Relation

- Let $\operatorname{OPT}(k, X)$ denote the maximum value that can be made from the first k items without exceeding weight X.
- Note: $\operatorname{OPT}(n, W)$ is the overall answer.
- Claim: $\operatorname{OPT}(k, X)$ satisfies this recurrence:
$\operatorname{OPT}(k, X)=\left\{\begin{array}{cl}0 & \text { if } k=0 \\ O P T(k-1, X) & \text { if } w_{k}>X \\ \max \left\{\begin{array}{c}\left(\begin{array}{l}\text { OPT }(k-1, X), \\ v_{k}+O P T\left(k-1, X-w_{k}\right)\end{array}\right\}\end{array}\right. & \text { otherwise }\end{array}\right.$
$\operatorname{OPT}(k, X)=$

$$
\left\{\begin{array}{cl}
0 & \text { if } k=0 \\
\max \left\{\begin{array}{c}
0 P T(k-1, X) \\
O P T(k-1, X), \\
v_{k}+O P T\left(k-1, X-w_{k}\right)
\end{array}\right\} & \text { otherwi } w_{k}>X
\end{array}\right.
$$

Let DP be a table of size $(n+1) \times(W+1)$.
For $X=0$ to $W+1$:
Set DP[0][X] $=0$
For $k=1$ to n :
For $X=0$ to W :
If $w_{k}>W$, set $\mathrm{DP}[k][X]=\mathrm{DP}[k-1][X]$.
Else, set DP[k][X] = max\{
DP[k-1][X],
$v_{k}+\operatorname{DP}[k-1]\left[X-w_{k}\right]$
\}
Return DP[$n][W]$.

Um... Wait...

- Runtime of this algorithm is $\mathrm{O}(n W)$ and space complexity is $\mathrm{O}(n W)$.
- This is a polynomial in n and W.
- This problem is NP-hard.

Did we just prove $P=$ NP?

A Note About Input Sizes

- A polynomial-time algorithm is one that runs in time polynomial in the total number of bits required to write out the input to the problem.
- How many bits are required to write out the value W ?
- Answer: $\mathbf{O}(\log \boldsymbol{W})$.
- Therefore, $\mathrm{O}(n W)$ is exponential in the number of bits required to write out the input.
- Example: Adding one more bit to the end of the representation of W doubles its size and doubles the runtime.
- This algorithm is called a pseudopolynomial time algorithm, since it is a polynomial in the numeric value of the input, not the number of bits in the input.

That Said...

- The runtime of $\mathrm{O}(n W)$ is better than our old runtime of $\mathrm{O}\left(2^{n} n\right)$ assuming that $W=o\left(2^{n}\right)$.
- That's little-o, not big-O.
- In fact - for any fixed W, this algorithm runs in linear time!
- Although there are exponentially many subsets to test, we can get away with just linear work if W is fixed!

Parameterized Complexity

- Parameterized complexity is a branch of complexity theory that studies the hardness of problems with respect to different "parameters" of the input.
- Often, NP-hard problems are not entirely infeasible as long as some "parameter" of the problem is fixed.
- In our case, $\mathrm{O}(n W)$ has two parameters the number of elements (n) and weight (W).

Fixed-Parameter Tractability

- Suppose that the input to a problem P can be characterized by two parameters n and k.
- P is called fixed-parameter tractable iff there is some algorithm that solves P in time $\mathrm{O}(f(k) \cdot p(n))$, where
- $f(k)$ is an arbitrary function.
- $p(n)$ is a polynomial in n.
- Intuitively, for any fixed k, the algorithm runs in a polynomial in n.
- That polynomial is always the same polynomial regardless of the choice of k.

Example: Finding Long Paths

The Long Path Problem

- Given a graph $G=(V, E)$ and a number k, we want to determine whether there is a simple path of length k exists in G.
- Known to be NP-hard by a reduction from finding Hamiltonian paths: a graph has a Hamiltonian path iff it has a simple path of length $n-1$.
- Applications in biology to finding protein signaling cascades.

A Naïve Approach

- To find all simple paths of length k, enumerate all $(k+1)$-permutations of nodes in V and check if each is a path.
- How many such permutations are there?
- Answer: n! / (n-k-1)!
- Time to process each is $O(k)$ when using an adjacency matrix.
- Total runtime is $\mathbf{O}(\boldsymbol{k} \cdot \boldsymbol{n}$! / ($\boldsymbol{n}-\boldsymbol{k}-\mathbf{1})$!)
- Decent for small k, unbelievably slow for larger k.

A Better Approach

- We can use a randomized technique called color-coding to speed this up.
- Suppose every node in the graph is colored one of $k+1$ different colors. A colorful path is a simple path of length k where each node has a different color.
- Idea: Show how to find colorful paths efficiently, then build a randomized algorithm for finding long paths that uses the colorful path finder as a subroutine.

Finding Colorful Paths: Seem Familiar?

Finding Colorful Paths

- Using a dynamic programming approach similar to TSP, can find all colorful paths originating at a node s in time $\mathrm{O}\left(2^{k} n^{2}\right)$.
- Can find colorful paths between any pair of nodes in time $\mathrm{O}\left(2^{k} n^{3}\right)$ by iterating this process for all possible start nodes.
- This is fixed-parameter tractable!

Random Colorings

- Suppose you want to find a simple path of length k in a graph.
- Randomly color all nodes in the graph one of $(k+1)$ different colors.
- If P is a simple path of length k in G, what is the probability that it is a colorful path?
- Answer: $(\mathbf{k}+\mathbf{1})$! / $(\mathbf{k}+\mathbf{1})^{\mathbf{k}+1}$

Stirling's Approximation

- Stirling's approximation states that

$$
n!\geq \frac{n^{n}}{e^{n}} \sqrt{2 \pi n}
$$

- Therefore, $(k+1)$! $/(k+1)^{k+1} \geq 1 / e^{k+1}$.
- If we randomly color the nodes in $G e^{k+1}$ times, the probability that any simple path of length k never becomes colorful is at most $1 / e$.
- Doing $e^{k+1} \ln n$ random colorings means we find a simple path of length k with high probability.
- Total runtime: $\left.\mathrm{O}\left(\mathrm{e}^{k} 2^{k} n^{3} \log n\right)=\mathbf{O}(\mathbf{(2 e})^{k} \boldsymbol{n}^{3} \log \boldsymbol{n}\right)$.
- Better than naïve solution in many cases!

Why All This Matters

- Last lecture: Brute-force search is not necessarily optimal for NP-hard problems.
- Today: Can often factor out the complexity into a "tractable" part and "intractable" part that depend on different parameters.
- Plus, we got to see DP combined with randomized algorithms!

Next Time

- Approximation Algorithms
- FPTAS's and Other Acronyms

