Dynamic Programming Part Three

Announcements

- Problem Set Five due right now, or due Wednesday with a late period.
- Problem Set Six out, due next Monday.
- Explore dynamic programming across different application domains!
- Get a feel for how to structure DP solutions!
- You may use a late day on Problem Set Six, but be aware this will overlap with the final project.
- Handout: "Guide to Dynamic Programming" also available.

Final Project Logistics

- Final project will go out next Monday and be due on Saturday, August 17 at 12:15PM (note the different time).
- Format: Three algorithms questions, each of which combine two or more different techniques from the quarter.
- No collaboration permitted with other students.
- No outside sources may be consulted.
- Course staff will only answer clarifying questions about the problems.

Please evaluate this course on Axess.

Your feedback really makes a difference.

Outline for Today

- Shortest Paths Revisited
- What if the edge weights are negative?
- The Bellman-Ford Algorithm
- A simple and elegant algorithm for finding shortest paths.
- The Floyd-Warshall Algorithm
- Finding shortest paths between all pairs of points.

Negative Edge Weights

The Recurrence

- Idea: Find paths of lengths at most $0,1,2, \ldots, n$.
- Let $w(u, v)$ denote the weight of edge (u, v).
- Let s be our start node. Let OPT($v, i)$ be the length of the shortest $s-v$ path whose length is at most i, or ∞ if no path exists.
- Claim: $\operatorname{OPT}(v, i)$ satisfies the following recurrence:
$\operatorname{OPT}(v, i)=\left\{\begin{array}{cl}0 & \begin{array}{l}\text { if } i=0 \text { and } v=s \\ \text { if } i=0 \text { and } v \neq s\end{array} \\ \min \left\{\begin{array}{l}\text { OPT }(v, i-1), \\ \min _{(u, v) \in E}\{\operatorname{OPT}(u, i-1)+w(u, v)\}\end{array}\right\} & \begin{array}{l}\text { otherwise }\end{array}\end{array}\right.$

The Bellman-Ford Algorithm

- The Bellman-Ford algorithm evaluates this recurrence bottom-up:
- Create a table DP of size $n \times n$.
- Set $\mathrm{DP}[v][0]=\infty$ for all $v \neq s$.
- Set DP[s][0] = 0
- For $i=1$ to $n-1$, for all $v \in V$:
- Set DP[v][i] = min \{
$\mathrm{DP}[v][i-1]$, $\min \{\operatorname{DP}[u][i-1]+w(u, v)\}($ where $(u, v) \in E)$ \}
- Return row n of DP.

	V_{1}	V_{2}	173	174
	Ω		\cdots -	-
D	\bigcirc			
	Ω			0
	Ω	0	8	0

$\operatorname{OPT}(v, i)=\left\{\begin{array}{c}0 \\ \infty \\ \min \left\{\begin{array}{c}\operatorname{OPT}(v, i-1), \\ \min _{(u, v) \in E}\{\operatorname{OPT}(u, i-1)+w(u, v)\}\end{array}\right\}\end{array}\right.$
if $i=0$ and $v=s$
if $i=0$ and $v \neq s$
otherwise

Analyzing Time Complexity

- What is the time complexity of this algorithm?
- Create a table DP of size $n \times n$.
- Set $\mathrm{DP}[v][0]=\infty$ for all $v \neq s$.
- Set DP[s][0] = 0
- For $i=1$ to $n-1$, for all $v \in V$:
- Set DP[v][i] = min \{

DP[v][i-1], $\min \{\operatorname{DP}[u][i-1]+w(u, v)\}(w h e r e(u, v) \in E)$ f

- Return row n of DP.
- Answer: $\mathbf{O}(\mathbf{m n})$, i you reverse G prior to running the algorithm.

Analyzing Space Complexity

- What is the space complexity of this algorithm?
- Create a table DP of size $n \times n$.
- Set $\mathrm{DP}[v][0]=\infty$ for all $v \neq s$.
- Set DP[s][0] = 0
- For $i=1$ to $n-1$, for all $v \in V$:
- Set DP[v][i] = min \{

DP[v][i-1], $\min \{\operatorname{DP}[u][i-1]+w(u, v)\}(w h e r e(u, v) \in E)$,

- Return row n of DP.
- Answer: $\mathbf{O}\left(\boldsymbol{n}^{2}\right)$. (Can we reduce this?)

All-Pairs Shortest Paths

Shortest Paths

- Dijkstra's algorithm and the Bellman-Ford algorithm solve the single-source shortest paths problem in which we want shortest paths starting from a single node.
- The all-pairs shortest paths problem asks how to find the shortest paths between all possible pairs of nodes.
- Can we already solve this problem?
- How efficient is our solution?

Intermediary Nodes

- A path between u and v starts at u, passes through some set of intermediary nodes, and ends at v.
- If there are no negative cycles, there is some shortest path from u to v where no nodes will be revisited. (Why?)

Intermediary Nodes

- Number all nodes $v_{1}, v_{2}, \ldots, v_{n}$.
- What does a shortest path from u to v look like if no intermediary nodes are allowed?
- What does a shortest path from u to v look like if only node v_{1} can be an intermediary node?
- What does a shortest path from u to v look like if only nodes ν_{1} and v_{2} can be intermediary nodes?
- What does a shortest path from u to v look like if only nodes ν_{1}, v_{2}, and ν_{3} can be intermediary nodes?

The Recurrence

- Let OPT($i, j, k)$ be the length of the shortest path from i to j where the only permitted internal nodes are $v_{1}, v_{2}, \ldots, v_{k}$.
- Claim: OPT(i,j,k) satisfies this recurrence:
$\operatorname{OPT}(i, j, k)=\left\{\begin{array}{cl}0 & \begin{array}{c}\text { if } i=j \text { and } k=0 \\ w\left(v_{i}, v_{j}\right) \\ \infty \\ \text { if }\left(v_{i}, v_{j}\right) \in E \text { and } k=0 \\ \text { otherwise if } k=0\end{array} \\ \left.\min \begin{array}{c}\operatorname{OPT}(i, j, k-1), \\ \operatorname{OPT}(i, k, k-1)+ \\ \operatorname{OPT}(k, j, k-1)\end{array}\right\} & \text { if } k \neq 0\end{array}\right.$

The Floyd-Warshall Algorithm

- Let DP be an $n \times n \times(n+1)$ table.
- For i from 1 to n, j from 1 to n :
- Set DP[i][j][0] = 0 if $i=j$.
- Set $\operatorname{DP}[i][j][0]=w\left(v_{i}, v_{j}\right)$ if $i \neq j$ and $(u, v) \in E$.
- Set $\operatorname{DP}[i][j][0]=\infty$ if $i \neq j$ and $(u, v) \notin E$.
- For k from 1 to n, i from 1 to n, j from 1 to n :
- Set DP[i][j][k] = min\{

DP[i][j][k-1],
DP[i][k][k-1] + DP[k][j][k-1]
\}

- Return row k of DP.

Time and Space Complexity

- What is the time complexity of this algorithm?
- O(n^{3})
- What is the space complexity of this algorithm?
- O(\mathbf{n}^{3})
- Interestingly, no dependence on the number of edges!

Further Algorithms

- Johnson's Algorithm combines Dijkstra's algorithm and Bellman-Ford together to solve the all-pairs shortest paths problem in arbitrary graphs with no negative cycles.
- Runtime is $\mathrm{O}\left(m n+n^{2} \log n\right)$ when implemented with appropriate data structures.
- How does that compare to Floyd-Warshall?
- Come talk to me after lecture for details!

Next Time

- Intractable Problems
- NP-Hardness
- Pseudopolynomial Algorithms

