Dynamic Programming
Part Three

Announcements

* Problem Set Five due right now, or due
Wednesday with a late period.

 Problem Set Six out, due next Monday.

« Explore dynamic programming across different
application domains!

« Get a feel for how to structure DP solutions!

 You may use a late day on Problem Set Six, but be
aware this will overlap with the final project.

« Handout: “Guide to Dynamic Programming”
also available.

Final Project Logistics

* Final project will go out next Monday and be
due on Saturday, August 17 at 12:15PM
(note the different time).

 Format: Three algorithms questions, each of
which combine two or more different
techniques from the quarter.

« No collaboration permitted with other students.
 No outside sources may be consulted.

« Course staff will only answer clarifying questions
about the problems.

Please evaluate this course on Axess.

Your feedback really makes a difference.

Outline for Today

 Shortest Paths Revisited
 What if the edge weights are negative?
« The Bellman-Ford Algorithm

« A simple and elegant algorithm for finding
shortest paths.

 The Floyd-Warshall Algorithm

 Finding shortest paths between all pairs of
points.

Negative Edge Weights

The Recurrence

 Idea: Find paths of lengths at most O, 1, 2, ..., n.
 Let w(u, v) denote the weight of edge (u, v).

* Let s be our start node. Let OPT(v, i) be the length
of the shortest s - v path whose length is at most i,
or oo if no path exists.

 Claim: OPT(v, i) satisfies the following recurrence:

| 0 ifi=0andv=s

00 ifi=0andv#s
OPT(v,i—1), |
min [OPT(u,i—1)+w(u,v)}|

| ((u,v)eE

OPT(v,i)=

min otherwise

J

The Bellman-Ford Algorithm

« The Bellman-Ford algorithm evaluates this
recurrence bottom-up:

 Create a table DP of size n X n.

« Set DP[v][0] = « for all v # s.

« Set DP[s][0] =0

e« Fori=1ton-1,forallveV:
- Set DP[v]l[i] =

min {

DP[v][i - 1],

min { DP[ul]li - 1] + w(u, v) } (where (u, v) € E)
}

e Return row n of DP,

Vi|V2|V3|V4

Slm|inv|w
olo|o|o
W
\®
|
\®

| 0 ifi=0andv=s
OPT(v i) 00 ifi=0andv#s
woi)= OPT(v,i—1), .
min| , . otherwise
min {OPT(u,i—1)+w(u,v)|
| ((u,v)eE)

Analyzing Time Complexity

 What is the time complexity of this algorithm?

 Create a table DP of size n X n.

« Set DP[V][0] = « forall v # s.

« Set DP[s][0] =0

« Fori=1ton-1,forallveV:
- Set DP[v][i] =

min {

DP[v][i - 1],

min { DP[u]li - 1] + w(u, v) } (where (u, v) € E)
}

e Return row n of DP.

 Answer: O(mn), i you reverse G prior to running the
algorithm.

Analyzing Space Complexity

 What is the space complexity of this algorithm?
 Create a table DP of size n X n.
« Set DP[V][0] = « forall v # s.
« Set DP[s][0] =0
« Fori=1ton-1,forallveV:
- Set DP[v]l[i] =

min {

DP[v][i - 1],

min { DP[u]li - 1] + w(u, v) } (where (u, v) € E)
}

« Return row n of DP,
« Answer: O(n?). (Can we reduce this?)

All-Pairs Shortest Paths

Shortest Paths

* Dijkstra's algorithm and the
Bellman-Ford algorithm solve the
single-source shortest paths problem
in which we want shortest paths starting
from a single node.

 The all-pairs shortest paths problem
asks how to find the shortest paths
between all possible pairs of nodes.

 Can we already solve this problem?
« How efficient is our solution?

Intermediary Nodes

A path between u and v starts at u,
passes through some set of intermediary
nodes, and ends at v.

 If there are no negative cycles, there is
some shortest path from u to v where no
nodes will be revisited. (Why?)

Intermediary Nodes

Number all nodes vi, v2, ..., vn.

What does a shortest path from u to v look like
if no intermediary nodes are allowed?

What does a shortest path from u to v look like
if only node vi1 can be an intermediary node?

What does a shortest path from u to v look like
if only nodes vi: and vz can be intermediary
nodes?

What does a shortest path from u to v look like
if only nodes vi, vz, and vs can be intermediary
nodes?

The Recurrence

 Let OPT(i, j, k) be the length of the
shortest path from i to j where the only
permitted internal nodes are v, vz, ..., Vx.

« Claim: OPT(i, j, k) satisfies this

recurrence:
| 0 ifi=jand k=0
w(v;, Vv if (v;,v;Je Eand k=0
OPT(i, j k)= | 00 otherwise if k=0
OPT(i, j,k—1),
min OPT(i,k,k—1)+ | ifk#0
| OPT(k,j k-1

The Floyd-Warshall Algorithm

e letDPbeann xn x (n + 1) table.

 Forifrom 1 to n,jfrom 1 to n:
. Set DP[i][jl[0] = 0 if i = j.
. Set DP[i][jl[0] = w(v, vj) ifi # jand (u, v) € E.
 Set DP[i][jl[0] = « ifi # j and (u, v) € E.

« For k from 1 ton, i from 1 to n, j from 1 to n:

« Set DP[i][jl[k] = min{
DPlilljllk - 1],
DPlil[kllk - 1] + DPLk]ljllk - 1]
}

e Return row k of DP.

Time and Space Complexity

 What is the time complexity of this
algorithm?
« O(n?)

 What is the space complexity of this
algorithm?
¢« O(n3)

* Interestingly, no dependence on the
number of edges!

Further Algorithms

Johnson's Algorithm combines Dijkstra's
algorithm and Bellman-Ford together to solve
the all-pairs shortest paths problem in
arbitrary graphs with no negative cycles.

Runtime is O(mn + n? log n) when implemented
with appropriate data structures.

How does that compare to Floyd-Warshall?

Come talk to me after lecture for details!

Next Time

 Intractable Problems
« NP-Hardness
* Pseudopolynomial Algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

