
  

Dynamic Programming
Part Three



  

Announcements

● Problem Set Five due right now, or due 
Wednesday with a late period.

● Problem Set Six out, due next Monday.
● Explore dynamic programming across different 

application domains!
● Get a feel for how to structure DP solutions!
● You may use a late day on Problem Set Six, but be 

aware this will overlap with the final project.

● Handout: “Guide to Dynamic Programming” 
also available.



  

Final Project Logistics

● Final project will go out next Monday and be 
due on Saturday, August 17 at 12:15PM 
(note the different time).

● Format: Three algorithms questions, each of 
which combine two or more different 
techniques from the quarter.
● No collaboration permitted with other students.
● No outside sources may be consulted.
● Course staff will only answer clarifying questions 

about the problems.



  

Please evaluate this course on Axess.

Your feedback really makes a difference.



  

Outline for Today

● Shortest Paths Revisited
● What if the edge weights are negative?

● The Bellman-Ford Algorithm
● A simple and elegant algorithm for finding 

shortest paths.

● The Floyd-Warshall Algorithm
● Finding shortest paths between all pairs of 

points.



  

Negative Edge Weights



  

The Recurrence

● Idea: Find paths of lengths at most 0, 1, 2, …, n.

● Let w(u, v) denote the weight of edge (u, v).

● Let s be our start node.  Let OPT(v, i) be the length 
of the shortest s – v path whose length is at most i, 
or ∞ if no path exists.

● Claim: OPT(v, i) satisfies the following recurrence:

OPT (v ,i)={
0 if i=0andv=s
∞ if i=0andv≠s

min { OPT (v ,i−1),
min

(u,v )∈E
{OPT(u,i−1)+w(u,v)}} otherwise



  

The Bellman-Ford Algorithm

● The Bellman-Ford algorithm evaluates this 
recurrence bottom-up:

● Create a table DP of size n × n.
● Set DP[v][0] = ∞ for all v ≠ s.
● Set DP[s][0] = 0
● For i = 1 to n – 1, for all v ∈ V:

– Set DP[v][i] = 
min {
    DP[v][i – 1],
    min { DP[u][i – 1] + w(u, v) } (where (u, v) ∈ E)
}

● Return row n of DP.
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Analyzing Time Complexity

● What is the time complexity of this algorithm?

● Create a table DP of size n × n.
● Set DP[v][0] = ∞ for all v ≠ s.
● Set DP[s][0] = 0
● For i = 1 to n – 1, for all v ∈ V:

– Set DP[v][i] = 
min {
    DP[v][i – 1],
    min { DP[u][i – 1] + w(u, v) } (where (u, v) ∈ E)
}

● Return row n of DP.
● Answer: O(mn), i you reverse G prior to running the 

algorithm.



  

Analyzing Space Complexity

● What is the space complexity of this algorithm?

● Create a table DP of size n × n.
● Set DP[v][0] = ∞ for all v ≠ s.
● Set DP[s][0] = 0
● For i = 1 to n – 1, for all v ∈ V:

– Set DP[v][i] = 
min {
    DP[v][i – 1],
    min { DP[u][i – 1] + w(u, v) } (where (u, v) ∈ E)
}

● Return row n of DP.
● Answer: O(n2).  (Can we reduce this?)



  

All-Pairs Shortest Paths



  

Shortest Paths

● Dijkstra's algorithm and the 
Bellman-Ford algorithm solve the 
single-source shortest paths problem 
in which we want shortest paths starting 
from a single node.

● The all-pairs shortest paths problem 
asks how to find the shortest paths 
between all possible pairs of nodes.

● Can we already solve this problem?
● How efficient is our solution?



  

Intermediary Nodes

● A path between u and v starts at u, 
passes through some set of intermediary 
nodes, and ends at v.

● If there are no negative cycles, there is 
some shortest path from u to v where no 
nodes will be revisited. (Why?)



  

Intermediary Nodes

● Number all nodes v₁, v₂, …, vₙ.

● What does a shortest path from u to v look like 
if no intermediary nodes are allowed?

● What does a shortest path from u to v look like 
if only node v₁ can be an intermediary node?

● What does a shortest path from u to v look like 
if only nodes v₁ and v₂ can be intermediary 
nodes?

● What does a shortest path from u to v look like 
if only nodes v₁, v₂, and v₃ can be intermediary 
nodes?



  

The Recurrence

● Let OPT(i, j, k) be the length of the 
shortest path from i to j where the only 
permitted internal nodes are v₁, v₂, …, vₖ.

● Claim: OPT(i, j, k) satisfies this 
recurrence:

OPT (i , j ,k)={
0 if i= jandk=0

w(v i ,v j) if (vi ,v j)∈Eandk=0
∞ otherwise if k=0

min {
OPT(i , j ,k−1),
OPT(i ,k ,k−1)+

     OPT (k , j ,k−1)} if k≠0



  

The Floyd-Warshall Algorithm

● Let DP be an n × n × (n + 1) table.
● For i from 1 to n, j from 1 to n:

● Set DP[i][j][0] = 0 if i = j.

● Set DP[i][j][0] = w(vi, vj) if i ≠ j and (u, v) ∈ E.

● Set DP[i][j][0] = ∞ if i ≠ j and (u, v) ∉ E.

● For k from 1 to n, i from 1 to n, j from 1 to n:
● Set DP[i][j][k] = min{

    DP[i][j][k – 1],
    DP[i][k][k – 1] + DP[k][j][k – 1]
}

● Return row k of DP.



  

Time and Space Complexity

● What is the time complexity of this 
algorithm?
● O(n3)

● What is the space complexity of this 
algorithm?
● O(n3)

● Interestingly, no dependence on the 
number of edges!



  

Further Algorithms

● Johnson's Algorithm combines Dijkstra's 
algorithm and Bellman-Ford together to solve 
the all-pairs shortest paths problem in 
arbitrary graphs with no negative cycles.

● Runtime is O(mn + n2 log n) when implemented 
with appropriate data structures.

● How does that compare to Floyd-Warshall?

● Come talk to me after lecture for details!



  

Next Time

● Intractable Problems
● NP-Hardness
● Pseudopolynomial Algorithms
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