Dynamic Programming Part Two

Announcements

- On-time Problem Set Four graded; will be returned at end of lecture.
- Late submissions should be graded by Monday; sorry about that!
- Problem Set Five due Monday, or Wednesday using a late period.
- Heads-up: No late days on the final project. You can a late day on Problem Set Six, but that will overlap with the final project.

Outline for Today

- String Algorithms
- Processing text, genomes, etc.
- Sequence Alignment
- Determining the similarity of DNA strands.
- Levenshtein Distance
- Checking how close two strings are.

Recap from Last Time

Dynamic Programming

- Dynamic programming is a technique useful for solving problems exhibiting the following properties:
- Overlapping subproblems: Different branches of the recursion will reuse each other's work.
- Optimal substructure: The optimal solution for one problem instance is formed from optimal solutions for smaller problems.
- Polynomial subproblems: The number of subproblems is small enough to be evaluated in polynomial time.

A Correction From Last Time...

Theorem: $\operatorname{OPT}(k)$ satisfies the previous recurrence.
Proof: If $k=0$, no people can be covered, so $\mathrm{OPT}(0)=0$. If $k=1$, we can choose tower 1 (value v_{1}) or no towers (value 0), so OPT(1) = v_{1}. So consider $k>1$.

If $k \in C$, then $k-1 \notin C$. Then all towers in C besides k are within the first $k-2$ towers, so $C(k-2) \leq \operatorname{OPT}(k-2)$. Also, $\mathrm{C}(k-2) \geq \mathrm{OPT}(k-2)$; otherwise we could replace all towers in C except k with an optimal set of the first $k-2$ towers to improve C. Thus $\operatorname{OPT}(k)=v_{k}+\operatorname{OPT}(k-2)$.
If $k \notin C$, all towers in C are in the first $k-1$ towers. Thus $C(k-1) \leq \operatorname{OPT}(k-1)$. Also, $C(k-1) \geq \operatorname{OPT}(k-1)$; if not, we could improve C by replacing it with an optimal set of the first $k-1$ towers. Therefore, OPT $(k)=\operatorname{OPT}(k-1)$.
Since the optimal solution for k towers must be the better of these, $\operatorname{OPT}(k)=\max \left\{\operatorname{OPT}(k-1), v_{k}+\operatorname{OPT}(k-2)\right\}$.

Sequence Alignment

DNA Structure

- DNA strands consist of strings of nucleotides. There are four possible nucleotides: A, C, T, and G.
- Over time, mutations can occur in DNA strands:
- Point mutations, where one nucleotide is replaced by another.
- Insertions, where extra DNA is spliced in.
- Deletions, where DNA is removed.
- Usually, the relative order of DNA letters remains the same.

Aligning DNA Strands

- DNA from related species often are similar, though not identical.
- We can try to align two DNA strands by inserting blanks (denoted by -) into the DNA strand.

-	A	T	T	A	G	C	-	T
T								
A	A	T	-	C	G	C	C	T

- There is a cost associated with pairing a letter with a blank and with pairing two mismatched letters.

Sequence Alignment

- "Cost" of an alignment determined as follows:
- For any characters a and b, cost of matching a and b is $\alpha_{a b}$. This is usually 0 if the characters are the same and nonzero otherwise.
- Cost of inserting a gap is δ.
- Assume $\alpha_{a b}$'s and δ are external, fixed parameters.
- The sequence alignment problem is the following: find the alignment of the sequences with the least total cost.

An Insight

- The last column in the alignment must
- Match the last characters from both strings:

A	-	C	G	C	A
A					
A	T	T	-	-	A

- Insert a gap up top:

$$
\begin{array}{|c|c|c|c|c|c|}
\hline \mathrm{G} & \mathrm{G} & \mathrm{C} & \mathrm{~T} & \mathrm{C} & \mathrm{~T} \\
\hline \mathrm{G} & \mathrm{G} & - & \mathrm{C} & - & \mathrm{G} \\
\hline
\end{array}
$$

- Insert a gap on bottom:

$$
\begin{array}{|c|c|c|c|c|c|c|}
\hline \mathrm{G} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{C} & \mathrm{~A} \\
\hline \mathrm{G} & - & - & \mathrm{T} & \mathrm{~A} & \mathrm{C} & - \\
\hline
\end{array}
$$

Some Notation

- Suppose we want to align the first i characters of A and the first j characters of B. (Denote this $A[1, i]$ and $\mathrm{B}[1, j]$
- Let OPT(i, j) denote the optimal cost of such an alignment.
- Claim: OPT (i, j) satisfies the following:
$\operatorname{OPT}(i, j)=\left\{\begin{array}{cc}j \delta & \text { if } i=0 \\ \text { i } \delta \\ \min j=0 \\ \left(\begin{array}{l}\delta+O P T(i-1, j), \\ \delta+O P T(i, j-1), \\ \alpha_{A[i] B[j]}+O P T(i-1, j-1)\end{array}\right.\end{array}\right\}$ otherwise

Theorem: OPT (i, j) satisfies the previous recurrence.
Proof: If $i=0$, the only way to match $A[1,0]$ and $B[1, j]$ is to insert j gaps into A to match the j characters of B. This has cost δj, so $\operatorname{OPT}(i, j)=\delta j$. By a similar argument, if $j=0$, then $\operatorname{OPT}(i, j)=\delta i$. Otherwise, $i>0$ and $j>0$. Consider an optimal alignment M^{*} of $A[1, i]$ and $B[1, j]$. There are three possibilities:
Case 1: M^{*} pairs $A[i]$ and $B[j]$. The rest of M^{*} aligns $A[1, i-1]$ and $B[1, j-1]$ and we claim it optimally aligns them; otherwise, changing M^{*} to optimally align $A[1, i-1]$ and $B[1, j-1]$ decreases the cost of M^{*}. Therefore, $\operatorname{OPT}(i, j)=\alpha_{\mathrm{A}[i] \mathrm{B}[j]}+\operatorname{OPT}(i-1, j-1)$.
Case 2: M^{*} pairs $A[i]$ with a blank. The rest of M^{*} aligns $A[1, i-1]$ and $B[1, j]$ and we claim it optimally aligns them; otherwise, changing M^{*} to optimally align $A[1, i-1]$ and $B[1, j]$ decreases the cost of M^{*}. Thus OPT $(i, j)=\delta+\operatorname{OPT}(i-1, j)$.
Case 3: M^{*} pairs $B[j]$ with a blank. By a similar argument to the previous case, we have $\operatorname{OPT}(i, j)=\delta+\operatorname{OPT}(i, j-1)$.
Since the optimal solution must be one of these three options, we have $\operatorname{OPT}(i, j)=\min \left\{\alpha_{\mathrm{A}[i] \mathrm{B}[j]}+\operatorname{OPT}(i-1, j-1), \delta+\operatorname{OPT}(i, j-1)\right.$, $\delta+\operatorname{OPT}(i-1, j)\}$.

Evaluating the Recurrence

- If we can evaluate this recurrence:
$\operatorname{OPT}(i, j)=\left\{\begin{array}{cc}j \delta \\ i \delta \\ \min \left\{\begin{array}{c}\text { if } i=0 \\ \delta+O P T(i-1, j), \\ \delta+O P T(i, j-1), \\ \alpha_{A[i] B[j]}+O P T(i-1, j-1)\end{array}\right.\end{array}\right\}$ if $j=0$
We can evaluate the cost of an optimal alignment.
- What happens if we evaluate it directly?

The Recursion Tree

Dynamic Programming

- Do we have these three properties?
- Overlapping subproblems
- Optimal substructure
- Polynomial subproblems
- Time to bring out the dynamic programming solution!

The Algorithm

- Create an $(|A|+1) \times(|B|+1)$ grid DP.
- For $i=0$ to $|A|$, set $\mathrm{DP}[i, 0]=\delta i$.
- For $j=0$ to $|B|$, set $\operatorname{DP}[0, j]=\delta j$.
- For $i=1$ to $|A|$:
- $\operatorname{For} j=1$ to $|B|$:
- Set DP[i][j] to the minimum of

$$
\begin{aligned}
& \bullet \mathrm{DP}[i-1][j]+\delta \\
& \bullet \mathrm{DP}[i][j-1]+\delta \\
& \bullet \mathrm{DP}[i-1][j-1]+\alpha_{\mathrm{A}[i] \mathrm{B}[j]}
\end{aligned}
$$

Analyzing the Algorithm

- Let $m=|A|$ and $n=|B|$.
- What is the runtime of this algorithm?
- O(mn)
- What is the space usage of this algorithm?
- O(mn)
- That's way less than the total number of possible alignments!

Finding the Alignment

- As with the DP algorithms we saw last time, we can recover the optimal sequence alignment by running the recurrence in reverse.
- Option 1: Start in the upper-left corner and walk backwards through the grid, at each point choosing a successor such that the total cost matches.
- Option 2: Treat the problem as finding the shortest path from the lower-left corner to the upper-right corner.

Reducing Space

- If you only care about the value of the optimal solution and not the actual solution, you can compress the DP table by only storing the last row.
- Runtime now $\mathrm{O}(m n)$ with space $\mathrm{O}(\min \{m, n\})$, which is better than before.
- Clever Trick: See Kleinberg and Tardos section 6.7 for a way to get an
$\mathrm{O}(m n)$-time, $\mathrm{O}(m+n)$-space algorithm that does recover the optimal solution.

A Quick History Lesson

Another Algorithm: Levenshtein Distance

Transforming Strings

- Given a source string and target string, transform the source string into the target string by applying these edits:
- Insertion of a new character,
- Deletion of an existing character, or
- Replacement of an existing character.
- The minimum number of edits required is called the Levenshtein distance.

Our Options

- Look at the first characters of each string.
- We can either
- Match them together, if they're the same character.
- Add in a character to the top or bottom to match the other string's character.
- Delete a character from the top or bottom.
- Replace the top or bottom character to match the other character.
- When one string becomes empty, the options are to add the remaining characters or delete them from the other string, both of which have the same cost.

Some Notation

- Suppose we want to transform the first i characters of A into the first j characters of B.
- Let OPT(i, j) denote the optimal cost of such an alignment.
- Let $I_{i j}$ be 0 if $A[i]=B[j]$ and 1 otherwise.
- Claim: OPT (i, j) satisfies the following:

Seem Familiar?

$\operatorname{OPT}(i, j)=\left\{\begin{array}{c}j \delta \\ i \delta \\ \min \left\{\begin{array}{c}\text { if } i=0 \\ \text { if } j=0 \\ \delta+O P T(i-1, j), \\ \delta+O P T(i, j-1), \\ \alpha_{A[i] B[j]}+O P T(i-1, j-1)\end{array}\right.\end{array}\right\}$ otherwise
$\operatorname{OPT}(i, j)=\left\{\begin{array}{cc}j & \begin{array}{c}\text { if } i=0 \\ i\end{array} \\ \min \left\{\begin{array}{l}1+O P T(i, j-1), \\ 1+O P T(i-1, j), \\ I_{i j}+O P T(i-1, j-1)\end{array}\right.\end{array}\right) \quad$ otherwise

A Clever Reduction

- Claim: The Levenshtein distance between two strings is equal to their alignment cost if we set
- $\delta=1$.
- $\alpha_{a b}=0$ if $a=b$ and is 1 otherwise.
- Proof Idea: First, prove that the previous recurrence holds for Levenshtein distance, then show the recurrence is identical to that of sequence alignment with the above parameterization.

Another Intuition

- Run sequence alignment and do the following:
- For any character matched against a blank, delete that character or insert a matching character into the other string.
- For any character matched against a mismatched character, replace one character with the other.
- Therefore, can compute distance and transformation in $\mathrm{O}(m n)$ time and $\mathrm{O}(m+n)$ space, or can get value in $\mathrm{O}(m n)$ time and $O(\min \{m, n\})$ space.

Next Time

- Shortest Paths Revisited
- The Bellman-Ford Algorithm
- Network Routing

