
  

Dynamic Programming
Part Two



  

Announcements

● On-time Problem Set Four graded; will be 
returned at end of lecture.
● Late submissions should be graded by 

Monday; sorry about that!

● Problem Set Five due Monday, or 
Wednesday using a late period.
● Heads-up: No late days on the final project.  

You can a late day on Problem Set Six, but 
that will overlap with the final project.



  

Outline for Today

● String Algorithms
● Processing text, genomes, etc.

● Sequence Alignment
● Determining the similarity of DNA strands.

● Levenshtein Distance
● Checking how close two strings are.



  

Recap from Last Time



  

Dynamic Programming

● Dynamic programming is a technique useful for 
solving problems exhibiting the following 
properties:
● Overlapping subproblems: Different branches 

of the recursion will reuse each other's work.
● Optimal substructure: The optimal solution 

for one problem instance is formed from optimal 
solutions for smaller problems.

● Polynomial subproblems: The number of 
subproblems is small enough to be evaluated in 
polynomial time.



  

A Correction From Last Time...



  

Theorem: OPT(k) satisfies the previous recurrence.

Proof: If k = 0, no people can be covered, so OPT(0) = 0.  If
k = 1, we can choose tower 1 (value v₁) or no towers
(value 0), so OPT(1) = v₁.  So consider k > 1.

If k ∈ C, then k – 1 ∉ C. Then all towers in C besides k are 
within the first k – 2 towers, so C(k – 2) ≤ OPT(k – 2). Also, 
C(k – 2) ≥ OPT(k – 2); otherwise we could replace all 
towers in C except k with an optimal set of the first k – 2 
towers to improve C.  Thus OPT(k) = vₖ + OPT(k – 2).

If k ∉ C, all towers in C are in the first k – 1 towers.  Thus 
C(k – 1) ≤ OPT(k – 1).  Also, C(k – 1) ≥ OPT(k – 1); if not, 
we could improve C by replacing it with an optimal set of 
the first k – 1 towers.  Therefore, OPT(k) = OPT(k – 1).

Since the optimal solution for k towers must be the better 
of these, OPT(k) = max{OPT(k – 1), vₖ + OPT(k – 2)}. ■



  

Sequence Alignment



  



  

DNA Structure

● DNA strands consist of strings of 
nucleotides.  There are four possible 
nucleotides: A, C, T, and G.

● Over time, mutations can occur in DNA 
strands:
● Point mutations, where one nucleotide is 

replaced by another.
● Insertions, where extra DNA is spliced in.
● Deletions, where DNA is removed.

● Usually, the relative order of DNA letters 
remains the same.



  

http://en.wikipedia.org/wiki/File:Tree_of_life_SVG.svg

Hey, that's 
us!

Hey, that's 
us!



  

Aligning DNA Strands

A T T GA C

A T C G C

T T

C T TA

● DNA from related species often are 
similar, though not identical.

● We can try to align two DNA strands by 
inserting blanks (denoted by -) into the 
DNA strand.

 

There is a cost associated with pairing a 
letter with a blank and with pairing two 
mismatched letters.



  

Aligning DNA Strands

● DNA from related species often are 
similar, though not identical.

● We can try to align two DNA strands by 
inserting blanks (denoted by -) into the 
DNA strand.

 

There is a cost associated with pairing a 
letter with a blank and with pairing two 
mismatched letters.

A T T GA C

A T C G C

T T

C T TA

-

-

-



  

Aligning DNA Strands

● DNA from related species often are 
similar, though not identical.

● We can try to align two DNA strands by 
inserting blanks (denoted by -) into the 
DNA strand.

 

There is a cost associated with pairing a 
letter with a blank and with pairing two 
mismatched letters.

A T T GA C

A T C G C

T T

C T TA

-

-

-



  

Aligning DNA Strands

● DNA from related species often are 
similar, though not identical.

● We can try to align two DNA strands by 
inserting blanks (denoted by -) into the 
DNA strand.

 

● There is a cost associated with pairing a 
letter with a blank and with pairing two 
mismatched letters.

A T T GA C

A T C G C

T T

C T TA

-

-

-



  

Sequence Alignment

● “Cost” of an alignment determined as follows:
● For any characters a and b, cost of matching a 

and b is αab.  This is usually 0 if the characters 
are the same and nonzero otherwise.

● Cost of inserting a gap is δ.

● Assume αab's and δ are external, fixed 
parameters.

● The sequence alignment problem is the 
following: find the alignment of the sequences 
with the least total cost.



  

An Insight

● The last column in the alignment must
● Match the last characters from both strings:

 
● Insert a gap up top:

 
● Insert a gap on bottom:

A C C T

A T

-

TT -

G

-

A

A T

G C C -

G T

G

-G C

T

-

T

G T

G T A A

G T

A

-- T

T

A

C

C -



  

An Insight

● The last column in the alignment must
● Match the last characters from both strings:

 
● Insert a gap up top:

 
● Insert a gap on bottom:

A C C T

A T

-

TT -

G

-

A

A T

G C C -

G T

G

-G C

T

-

T

G T

G T A A

G T

A

-- T

T

A

C

C -



  

Some Notation

● Suppose we want to align the first i characters 
of A and the first j characters of B.  (Denote 
this A[1, i] and B[1, j]

● Let OPT(i, j) denote the optimal cost of such an 
alignment.

● Claim: OPT(i, j) satisfies the following:



  

Some Notation

● Suppose we want to align the first i characters 
of A and the first j characters of B.  (Denote 
this A[1, i] and B[1, j]

● Let OPT(i, j) denote the optimal cost of such an 
alignment.

● Claim: OPT(i, j) satisfies the following:

OPT (i , j)={
jδ if i=0
iδ if j=0

min {
δ+OPT (i−1, j) ,
δ+OPT (i , j−1) ,
α A[i]B[ j ]+OPT (i−1, j−1)} otherwise

?



  

Some Notation

● Suppose we want to align the first i characters 
of A and the first j characters of B.  (Denote 
this A[1, i] and B[1, j]

● Let OPT(i, j) denote the optimal cost of such an 
alignment.

● Claim: OPT(i, j) satisfies the following:

OPT (i , j)={
jδ if i=0
iδ if j=0

min {
δ+OPT (i−1, j) ,
δ+OPT (i , j−1) ,
α A[i]B[ j ]+OPT (i−1, j−1)} otherwise



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and A[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and A[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and A[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and A[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and A[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and A[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and B[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and B[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and B[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and B[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and B[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and B[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = max{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Theorem: OPT(i, j) satisfies the previous recurrence.

Proof: If i = 0, the only way to match A[1, 0] and B[1, j] is to insert
 j gaps into A to match the j characters of B.  This has cost δj, so
OPT(i, j) = δj.  By a similar argument, if j = 0, then OPT(i, j) = δi.
Otherwise, i > 0 and j > 0.  Consider an optimal alignment M* of
A[1, i] and B[1, j].  There are three possibilities:

Case 1: M* pairs A[i] and B[j]. The rest of M* aligns A[1, i – 1] and 
B[1, j – 1] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j – 1] decreases 
the cost of M*. Therefore, OPT(i, j) = αA[i]B[j] + OPT(i – 1, j – 1).

Case 2: M* pairs A[i] with a blank.  The rest of M* aligns A[1, i – 1] 
and B[1, j] and we claim it optimally aligns them; otherwise, 
changing M* to optimally align A[1, i – 1] and B[1, j ] decreases the 
cost of M*.  Thus OPT(i, j) = δ + OPT(i – 1, j).

Case 3: M* pairs B[j] with a blank.  By a similar argument to the 
previous case, we have OPT(i, j) = δ + OPT(i, j – 1).

Since the optimal solution must be one of these three options, we 
have OPT(i, j) = min{αA[i]B[j] + OPT(i – 1, j – 1), δ + OPT(i, j – 1),
δ + OPT(i – 1, j)}. ■



  

Evaluating the Recurrence

● If we can evaluate this recurrence:

We can evaluate the cost of an optimal 
alignment.

● What happens if we evaluate it directly?

OPT (i , j)={
jδ if i=0
iδ if j=0

min {
δ+OPT (i−1, j) ,
δ+OPT (i , j−1) ,
α A[i]B[ j ]+OPT (i−1, j−1)} otherwise



  

The Recursion Tree

(3, 3)

(2, 2)(3, 2) (2, 3)

(3, 1) (2, 1) (2, 2) (2, 1) (1, 1) (1, 2) (2, 2) (1, 2) (1, 3)

...



  

Dynamic Programming

● Do we have these three properties?
● Overlapping subproblems
● Optimal substructure
● Polynomial subproblems

● Time to bring out the dynamic 
programming solution!



  A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

2

1

2

3

1

2

3

2

4 3

2

3

4

3

3

4

5

2

4 3

A G T T C

G

T

C

C



  

The Algorithm

● Create an (|A| + 1) × (|B| + 1) grid DP.
● For i = 0 to |A|, set DP[i, 0] = δi.
● For j = 0 to |B|, set DP[0, j] = δj.
● For i = 1 to |A|:

● For j = 1 to |B|:
– Set DP[i][j] to the minimum of

● DP[i – 1][j] + δ
● DP[i][j – 1] + δ
● DP[i – 1][j – 1] + αA[i]B[j]



  

The Algorithm

● Create an (|A| + 1) × (|B| + 1) grid DP.
● For i = 0 to |A|, set DP[i, 0] = δi.
● For j = 0 to |B|, set DP[0, j] = δj.
● For i = 1 to |A|:

● For j = 1 to |B|:
– Set DP[i][j] to the minimum of

● DP[i – 1][j] + δ
● DP[i][j – 1] + δ
● DP[i – 1][j – 1] + αA[i]B[j]

Question: Could we also 
go column-by-column 
instead of row-by-row?

Question: Could we also 
go column-by-column 
instead of row-by-row?



  

Analyzing the Algorithm

● Let m = |A| and n = |B|.
● What is the runtime of this algorithm?

● O(mn)
● What is the space usage of this 

algorithm?
● O(mn)

● That's way less than the total number of 
possible alignments!



  

2

1

0

3

3

2

1

4

4 5

2

1

2

3

1

2

3

2

4 3

2

3

4

3

3

4

5

2

4 3

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

2

1

2

3

1

2

3

2

4 3

2

3

4

3

3

4

5

2

4 3

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

2

1

2

3

1

2

3

2

4 3

2

3

4

3

3

4

5

2

4 3

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

2

1

2

3

1

2

3

2

4 3

2

3

4

3

3

4

5

2

4 3

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

2

1

2

3

1

2

3

2

4 3

2

3

4

3

3

4

5

2

4 3

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

2

1

2

3

1

2

3

2

4 3

2

3

4

3

3

4

5

2

4 3

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

2

1

2

3

1

2

3

2

4 3

2

3

4

3

3

4

5

2

4 3

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

2

1

2

3

1

2

3

2

4 3

2

3

4

3

3

4

5

2

4 3

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

2

1

2

3

1

2

3

2

4 3

2

3

4

3

3

4

5

2

4 3

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

1   2   

1

1   2   1   

1
1   

1   2   

2   

1   

1

1   

1

1

1   

2

1

2

3

1

2

3

2

4 3

1   2   

1

1   0   1   

1
1   

1   2   

2   

1   

1

1   

1

1

1   

2

3

4

3

3

4

5

2

4 3

1   2   

1

1   2   1   

1
1   

1   0   

0   

1   

1

1   

1

1

1   

1

2   

1

2   

1

2   

1

0   

1

1

2   

1

2   

1

0   

1

2   

1

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

1   2   

1

1   2   1   

1
1   

1   2   

2   

1   

1

1   

1

1

1   

2

1

2

3

1

2

3

2

4 3

1   2   

1

1   0   1   

1
1   

1   2   

2   

1   

1

1   

1

1

1   

2

3

4

3

3

4

5

2

4 3

1   2   

1

1   2   1   

1
1   

1   0   

0   

1   

1

1   

1

1

1   

1

2   

1

2   

1

2   

1

0   

1

1

2   

1

2   

1

0   

1

2   

1

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

1   2   

1

1   2   1   

1
1   

1   2   

2   

1   

1

1   

1

1

1   

2

1

2

3

1

2

3

2

4 3

1   2   

1

1   0   1   

1
1   

1   2   

2   

1   

1

1   

1

1

1   

2

3

4

3

3

4

5

2

4 3

1   2   

1

1   2   1   

1
1   

1   0   

0   

1   

1

1   

1

1

1   

1

2   

1

2   

1

2   

1

0   

1

1

2   

1

2   

1

0   

1

2   

1

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

1   2   

1

1   2   1   

1
1   

1   2   

2   

1   

1

1   

1

1

1   

2

1

2

3

1

2

3

2

4 3

1   2   

1

1   0   1   

1
1   

1   2   

2   

1   

1

1   

1

1

1   

2

3

4

3

3

4

5

2

4 3

1   2   

1

1   2   1   

1
1   

1   0   

0   

1   

1

1   

1

1

1   

1

2   

1

2   

1

2   

1

0   

1

1

2   

1

2   

1

0   

1

2   

1

A G T T C

G

T

C

C



  

2

1

0

3

3

2

1

4

4 5

1   2   

1

1   2   1   

1
1   

1   2   

2   

1   

1

1   

1

1

1   

2

1

2

3

1

2

3

2

4 3

1   2   

1

1   0   1   

1
1   

1   2   

2   

1   

1

1   

1

1

1   

2

3

4

3

3

4

5

2

4 3

1   2   

1

1   2   1   

1
1   

1   0   

0   

1   

1

1   

1

1

1   

1

2   

1

2   

1

2   

1

0   

1

1

2   

1

2   

1

0   

1

2   

1

A G T T C

G

T

C

C



  

Finding the Alignment

● As with the DP algorithms we saw last time, 
we can recover the optimal sequence 
alignment by running the recurrence in 
reverse.

● Option 1: Start in the upper-left corner and 
walk backwards through the grid, at each 
point choosing a successor such that the 
total cost matches.

● Option 2: Treat the problem as finding the 
shortest path from the lower-left corner to 
the upper-right corner.



  

0 1 2 3 4 5
A G T T C

G

T

C

C



  

0 1 2 3 4 5
A G T T C

G

T

C

C

1 2 1 2 3 4



  

A G T T C

G

T

C

C

1 2 1 2 3 4



  

A G T T C

G

T

C

C

1 2 1 2 3 4

2 3 2 1 2 3



  

A G T T C

G

T

C

C

2 3 2 1 2 3



  

A G T T C

G

T

C

C

2 3 2 1 2 3

3 4 3 2 3 2



  

A G T T C

G

T

C

C

3 4 3 2 3 2



  

A G T T C

G

T

C

C

3 4 3 2 3 2

4 5 4 3 4 3



  

A G T T C

G

T

C

C 4 5 4 3 4 3



  

A G T T C

G

T

C

C 4 5 4 3 4 3



  

Reducing Space

● If you only care about the value of the 
optimal solution and not the actual 
solution, you can compress the DP table 
by only storing the last row.

● Runtime now O(mn) with space
O(min{m, n}), which is better than 
before.

● Clever Trick: See Kleinberg and Tardos 
section 6.7 for a way to get an 
O(mn)-time, O(m + n)-space algorithm 
that does recover the optimal solution.



  

A Quick History Lesson



  

Another Algorithm: Levenshtein Distance



  

P E R F O R M

D E F O R M



  

D E R F O R M

D E F O R M



  

D E R F O R M

D E F O R M



  

D E F O R M

D E F O R M



  

R E P E A T

P R E P A R E



  

R E P E A T

P R E P A R E

P



  

R E P E A T

P R E P A R E

P



  

R E P A T

P R E P A R E

P



  

R E P A R

P R E P A R E

P



  

R E P A R

P R E P A R E

P E



  

Transforming Strings

● Given a source string and target string, 
transform the source string into the 
target string by applying these edits:
● Insertion of a new character,
● Deletion of an existing character, or
● Replacement of an existing character.

● The minimum number of edits required is 
called the Levenshtein distance.



  

Thinking Recursively

R E P E A T

P R E P A R E



  

Thinking Recursively

E P E A T

R E P A R E

R

P



  

Thinking Recursively

E P E A T

R E P A R E

R

P

P



  

Thinking Recursively

E P E A T

R E P A R E

R



  

Thinking Recursively

E P E A T

E P A R E

R

R



  

Thinking Recursively

E P E A T

E P A R E



  

Thinking Recursively

P E A T

P A R E

E

E



  

Thinking Recursively

P E A T

P A R E



  

Thinking Recursively

E A T

A R E

P

P



  

Thinking Recursively

E A T

A R E



  

Thinking Recursively

E A T

A R E

E

A



  

Thinking Recursively

E A T

A R E

E

A



  

Thinking Recursively

A T

A R EA



  

Thinking Recursively

A T

A R EA

A



  

Thinking Recursively

T

R E



  

Thinking Recursively

T

R E

T

R



  

Thinking Recursively

T

R E

R

R



  

Thinking Recursively

E



  

Thinking Recursively

EE



  

Thinking Recursively

EE
We can either delete 
this character or add a 

matching E up top.

We can either delete 
this character or add a 

matching E up top.



  

Our Options

● Look at the first characters of each string.
● We can either

● Match them together, if they're the same character.
● Add in a character to the top or bottom to match 

the other string's character.
● Delete a character from the top or bottom.
● Replace the top or bottom character to match the 

other character.

● When one string becomes empty, the options 
are to add the remaining characters or delete 
them from the other string, both of which have 
the same cost.



  

Some Notation
● Suppose we want to transform the first i 

characters of A into the first j characters of B.

● Let OPT(i, j) denote the optimal cost of such an 
alignment.

● Let Iij be 0 if A[i] = B[j] and 1 otherwise. 

● Claim: OPT(i, j) satisfies the following:

OPT (i , j)={
j if i=0
i if j=0

min {
1+OPT (i , j−1) ,
1+OPT (i−1, j) ,
Iij+OPT (i−1, j−1)} otherwise



  

Seem Familiar?

OPT (i , j)={
j if i=0
i if j=0

min {
1+OPT (i , j−1) ,
1+OPT (i−1, j) ,
Iij+OPT (i−1, j−1)} otherwise

OPT (i , j)={
jδ if i=0
iδ if j=0

min {
δ+OPT (i−1, j) ,
δ+OPT (i , j−1) ,
α A[i]B[ j ]+OPT (i−1, j−1)} otherwise



  

A Clever Reduction

● Claim: The Levenshtein distance between two 
strings is equal to their alignment cost if we set
● δ = 1.

● αab = 0 if a = b and is 1 otherwise.

● Proof Idea: First, prove that the previous 
recurrence holds for Levenshtein distance, 
then show the recurrence is identical to that of 
sequence alignment with the above 
parameterization.



  

The Intuition

R E P E A T

R E P A R EP



  

The Intuition

R E P E A T

R E P A R EP

--

-



  

The Intuition

R E P E A T

R E P A R EP

--

-



  

The Intuition

R E P E A T

R E P A R EP

--

-



  

The Intuition

R E P E A T

R E P A R EP

--

-



  

The Intuition

R E P E A T

R E P A R EP

--

-



  

Another Intuition

● Run sequence alignment and do the 
following:
● For any character matched against a blank, delete 

that character or insert a matching character into 
the other string.

● For any character matched against a mismatched 
character, replace one character with the other.

● Therefore, can compute distance and 
transformation in O(mn) time and O(m + n) 
space, or can get value in O(mn) time and 
O(min{m, n}) space.



  

Next Time

● Shortest Paths Revisited
● The Bellman-Ford Algorithm
● Network Routing


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

