#### Dynamic Programming Part Two

#### Announcements

- On-time Problem Set Four graded; will be returned at end of lecture.
  - Late submissions should be graded by Monday; sorry about that!
- Problem Set Five due Monday, or Wednesday using a late period.
  - Heads-up: No late days on the final project. You can a late day on Problem Set Six, but that will overlap with the final project.

# Outline for Today

- String Algorithms
  - Processing text, genomes, etc.
- Sequence Alignment
  - Determining the similarity of DNA strands.
- Levenshtein Distance
  - Checking how close two strings are.

#### Recap from Last Time

# Dynamic Programming

- Dynamic programming is a technique useful for solving problems exhibiting the following properties:
  - **Overlapping subproblems:** Different branches of the recursion will reuse each other's work.
  - **Optimal substructure:** The optimal solution for one problem instance is formed from optimal solutions for smaller problems.
  - **Polynomial subproblems:** The number of subproblems is small enough to be evaluated in polynomial time.

#### A Correction From Last Time...

**Proof:** If k = 0, no people can be covered, so OPT(0) = 0. If k = 1, we can choose tower 1 (value  $v_1$ ) or no towers (value 0), so  $OPT(1) = v_1$ . So consider k > 1.

If  $k \in C$ , then  $k - 1 \notin C$ . Then all towers in *C* besides *k* are within the first k - 2 towers, so  $C(k - 2) \leq OPT(k - 2)$ . Also,  $C(k - 2) \geq OPT(k - 2)$ ; otherwise we could replace all towers in *C* except *k* with an optimal set of the first k - 2 towers to improve *C*. Thus  $OPT(k) = v_k + OPT(k - 2)$ .

If  $k \notin C$ , all towers in *C* are in the first k - 1 towers. Thus  $C(k - 1) \leq OPT(k - 1)$ . Also,  $C(k - 1) \geq OPT(k - 1)$ ; if not, we could improve *C* by replacing it with an optimal set of the first k - 1 towers. Therefore, OPT(k) = OPT(k - 1).

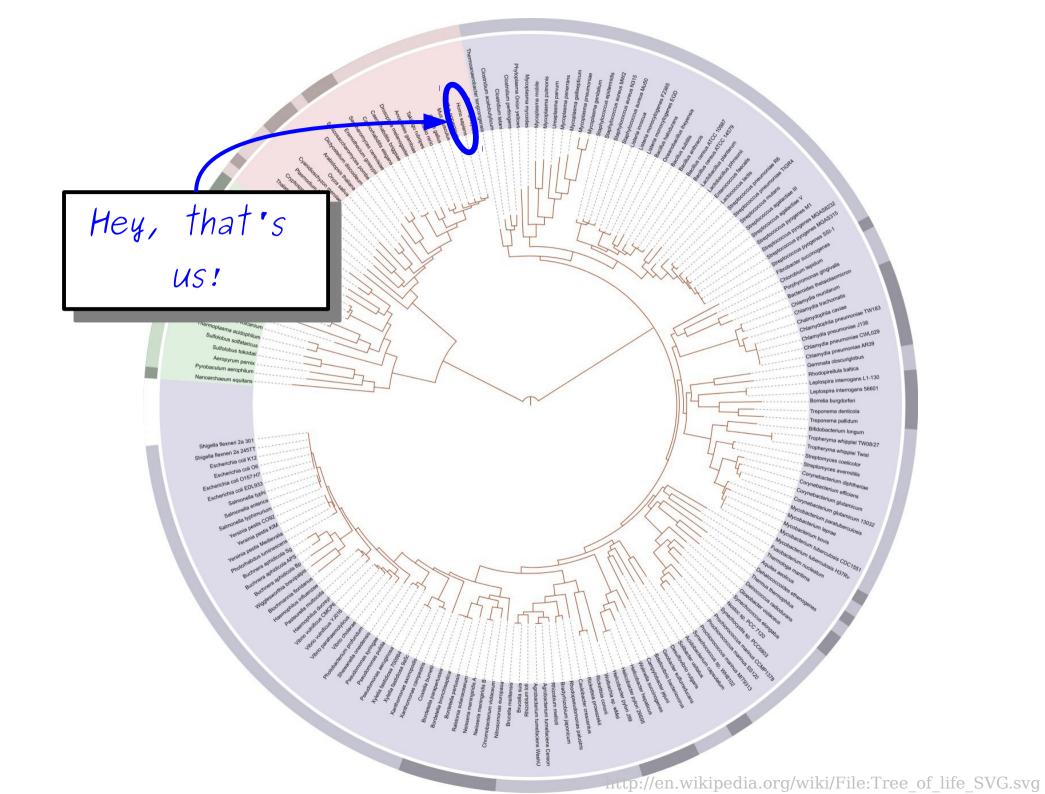
Since the optimal solution for *k* towers must be the better of these,  $OPT(k) = max{OPT(k - 1), v_k + OPT(k - 2)}$ .

Sequence Alignment

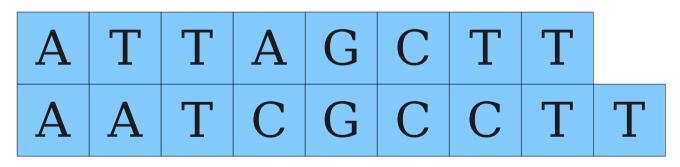


#### **DNA Structure**

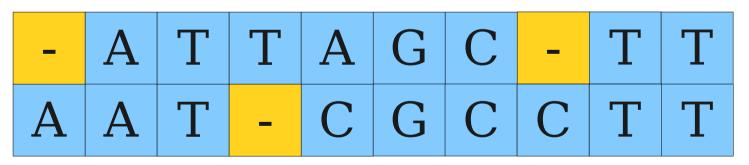
- DNA strands consist of strings of **nucleotides**. There are four possible nucleotides: A, C, T, and G.
- Over time, mutations can occur in DNA strands:
  - **Point mutations**, where one nucleotide is replaced by another.
  - **Insertions**, where extra DNA is spliced in.
  - **Deletions**, where DNA is removed.
- Usually, the relative order of DNA letters remains the same.



- DNA from related species often are similar, though not identical.
- We can try to **align** two DNA strands by inserting blanks (denoted by -) into the DNA strand.



- DNA from related species often are similar, though not identical.
- We can try to **align** two DNA strands by inserting blanks (denoted by -) into the DNA strand.



- DNA from related species often are similar, though not identical.
- We can try to **align** two DNA strands by inserting blanks (denoted by -) into the DNA strand.

- DNA from related species often are similar, though not identical.
- We can try to **align** two DNA strands by inserting blanks (denoted by -) into the DNA strand.

• There is a cost associated with pairing a letter with a blank and with pairing two mismatched letters.

# Sequence Alignment

- "Cost" of an alignment determined as follows:
  - For any characters *a* and *b*, cost of matching *a* and *b* is  $\alpha_{ab}$ . This is usually 0 if the characters are the same and nonzero otherwise.
  - Cost of inserting a gap is  $\delta.$
- Assume  $\alpha_{_{ab}}$  's and  $\delta$  are external, fixed parameters.
- The **sequence alignment** problem is the following: find the alignment of the sequences with the least total cost.

# An Insight

- The last column in the alignment must
  - Match the last characters from both strings:

| Α | - | С | G | С | A | Т |
|---|---|---|---|---|---|---|
| A | Т | Т | - | - | A | Т |

• Insert a gap up top:

| G | G | С | Т | С | Т | - |
|---|---|---|---|---|---|---|
| G | G | - | С | - | G | Т |

• Insert a gap on bottom:

| G | A | Т | Т | A | С | A |
|---|---|---|---|---|---|---|
| G | - | - | Т | A | С | - |

# An Insight

- The last column in the alignment must
  - Match the last characters from both strings:

| Α | - | С | G | С | Α | Т |
|---|---|---|---|---|---|---|
| Α | Т | Т | - | - | Α | Т |

• Insert a gap up top:

| G | G | С | Т | С | Т | - |
|---|---|---|---|---|---|---|
| G | G | - | С | - | G | Т |

• Insert a gap on bottom:

| G | Α | Т | Т | Α | С | Α |
|---|---|---|---|---|---|---|
| G | - | - | Т | Α | С | - |

## Some Notation

- Suppose we want to align the first *i* characters of *A* and the first *j* characters of *B*. (Denote this *A*[1, *i*] and B[1, *j*]
- Let OPT(*i*, *j*) denote the optimal cost of such an alignment.
- **Claim:** OPT(*i*, *j*) satisfies the following:

## Some Notation

- Suppose we want to align the first *i* characters of *A* and the first *j* characters of *B*. (Denote this *A*[1, *i*] and B[1, *j*]
- Let OPT(*i*, *j*) denote the optimal cost of such an alignment.
- **Claim:** OPT(*i*, *j*) satisfies the following:

$$OPT(i, j) = \begin{cases} if i=0 \\ if j=0 \end{cases}$$
$$min \begin{cases} \delta + OPT(i-1, j), \\ \delta + OPT(i, j-1), \\ \alpha_{A[i]B[j]} + OPT(i-1, j-1) \end{cases} otherwise$$

## Some Notation

- Suppose we want to align the first *i* characters of *A* and the first *j* characters of *B*. (Denote this *A*[1, *i*] and B[1, *j*]
- Let OPT(*i*, *j*) denote the optimal cost of such an alignment.
- **Claim:** OPT(*i*, *j*) satisfies the following:

 $OPT(i,j) = \begin{cases} j\delta & if i=0\\ i\delta & if j=0 \end{cases}$  $min \begin{cases} \delta + OPT(i-1,j), \\ \delta + OPT(i,j-1), \\ \alpha_{A[i]B[j]} + OPT(i-1,j-1) \end{cases} otherwise$ 

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B.

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ .

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ . By a similar argument, if j = 0, then  $OPT(i, j) = \delta i$ .

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ . By a similar argument, if j = 0, then  $OPT(i, j) = \delta i$ . Otherwise, i > 0 and j > 0.

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ . By a similar argument, if j = 0, then  $OPT(i, j) = \delta i$ . Otherwise, i > 0 and j > 0. Consider an optimal alignment  $M^*$  of A[1, i] and B[1, j].

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ . By a similar argument, if j = 0, then  $OPT(i, j) = \delta i$ . Otherwise, i > 0 and j > 0. Consider an optimal alignment  $M^*$  of A[1, i] and B[1, j]. There are three possibilities:

Case 1:  $M^*$  pairs A[i] and B[j].

*Case 2:*  $M^*$  pairs A[i] with a blank.

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ . By a similar argument, if j = 0, then  $OPT(i, j) = \delta i$ . Otherwise, i > 0 and j > 0. Consider an optimal alignment  $M^*$  of A[1, i] and B[1, j]. There are three possibilities:

Case 1:  $M^*$  pairs A[i] and B[j]. The rest of  $M^*$  aligns A[1, i-1] and B[1, j-1] and we claim it optimally aligns them; otherwise, changing  $M^*$  to optimally align A[1, i-1] and B[1, j-1] decreases the cost of  $M^*$ .

*Case 2: M*\* pairs *A*[*i*] with a blank.

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ . By a similar argument, if j = 0, then  $OPT(i, j) = \delta i$ . Otherwise, i > 0 and j > 0. Consider an optimal alignment  $M^*$  of A[1, i] and B[1, j]. There are three possibilities:

*Case 1:*  $M^*$  pairs A[i] and B[j]. The rest of  $M^*$  aligns A[1, i-1] and B[1, j-1] and we claim it optimally aligns them; otherwise, changing  $M^*$  to optimally align A[1, i-1] and B[1, j-1] decreases the cost of  $M^*$ . Therefore,  $OPT(i, j) = \alpha_{A[i]B[i]} + OPT(i-1, j-1)$ .

*Case 2: M*\* pairs *A*[*i*] with a blank.

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ . By a similar argument, if j = 0, then  $OPT(i, j) = \delta i$ . Otherwise, i > 0 and j > 0. Consider an optimal alignment  $M^*$  of A[1, i] and B[1, j]. There are three possibilities:

*Case 1:*  $M^*$  pairs A[i] and B[j]. The rest of  $M^*$  aligns A[1, i-1] and B[1, j-1] and we claim it optimally aligns them; otherwise, changing  $M^*$  to optimally align A[1, i-1] and B[1, j-1] decreases the cost of  $M^*$ . Therefore,  $OPT(i, j) = \alpha_{A[i]B[i]} + OPT(i-1, j-1)$ .

Case 2:  $M^*$  pairs A[i] with a blank. The rest of  $M^*$  aligns A[1, i-1] and B[1, j] and we claim it optimally aligns them; otherwise, changing  $M^*$  to optimally align A[1, i-1] and B[1, j] decreases the cost of  $M^*$ .

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ . By a similar argument, if j = 0, then  $OPT(i, j) = \delta i$ . Otherwise, i > 0 and j > 0. Consider an optimal alignment  $M^*$  of A[1, i] and B[1, j]. There are three possibilities:

*Case 1:*  $M^*$  pairs A[i] and B[j]. The rest of  $M^*$  aligns A[1, i-1] and B[1, j-1] and we claim it optimally aligns them; otherwise, changing  $M^*$  to optimally align A[1, i-1] and B[1, j-1] decreases the cost of  $M^*$ . Therefore,  $OPT(i, j) = \alpha_{A[i]B[i]} + OPT(i-1, j-1)$ .

Case 2:  $M^*$  pairs A[i] with a blank. The rest of  $M^*$  aligns A[1, i-1] and B[1, j] and we claim it optimally aligns them; otherwise, changing  $M^*$  to optimally align A[1, i-1] and B[1, j] decreases the cost of  $M^*$ . Thus  $OPT(i, j) = \delta + OPT(i-1, j)$ .

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ . By a similar argument, if j = 0, then  $OPT(i, j) = \delta i$ . Otherwise, i > 0 and j > 0. Consider an optimal alignment  $M^*$  of A[1, i] and B[1, j]. There are three possibilities:

*Case 1:*  $M^*$  pairs A[i] and B[j]. The rest of  $M^*$  aligns A[1, i-1] and B[1, j-1] and we claim it optimally aligns them; otherwise, changing  $M^*$  to optimally align A[1, i-1] and B[1, j-1] decreases the cost of  $M^*$ . Therefore,  $OPT(i, j) = \alpha_{A[i]B[i]} + OPT(i-1, j-1)$ .

Case 2:  $M^*$  pairs A[i] with a blank. The rest of  $M^*$  aligns A[1, i-1] and B[1, j] and we claim it optimally aligns them; otherwise, changing  $M^*$  to optimally align A[1, i-1] and B[1, j] decreases the cost of  $M^*$ . Thus  $OPT(i, j) = \delta + OPT(i-1, j)$ .

*Case 3:*  $M^*$  pairs B[j] with a blank. By a similar argument to the previous case, we have  $OPT(i, j) = \delta + OPT(i, j-1)$ .

**Proof:** If i = 0, the only way to match A[1, 0] and B[1, j] is to insert j gaps into A to match the j characters of B. This has cost  $\delta j$ , so  $OPT(i, j) = \delta j$ . By a similar argument, if j = 0, then  $OPT(i, j) = \delta i$ . Otherwise, i > 0 and j > 0. Consider an optimal alignment  $M^*$  of A[1, i] and B[1, j]. There are three possibilities:

*Case 1:*  $M^*$  pairs A[i] and B[j]. The rest of  $M^*$  aligns A[1, i-1] and B[1, j-1] and we claim it optimally aligns them; otherwise, changing  $M^*$  to optimally align A[1, i-1] and B[1, j-1] decreases the cost of  $M^*$ . Therefore,  $OPT(i, j) = \alpha_{A[i]B[i]} + OPT(i-1, j-1)$ .

Case 2:  $M^*$  pairs A[i] with a blank. The rest of  $M^*$  aligns A[1, i-1] and B[1, j] and we claim it optimally aligns them; otherwise, changing  $M^*$  to optimally align A[1, i-1] and B[1, j] decreases the cost of  $M^*$ . Thus  $OPT(i, j) = \delta + OPT(i-1, j)$ .

*Case 3:*  $M^*$  pairs B[j] with a blank. By a similar argument to the previous case, we have  $OPT(i, j) = \delta + OPT(i, j-1)$ .

Since the optimal solution must be one of these three options, we have  $OPT(i, j) = \min\{\alpha_{A[i]B[j]} + OPT(i-1, j-1), \delta + OPT(i, j-1), \delta + OPT(i-1, j)\}$ .

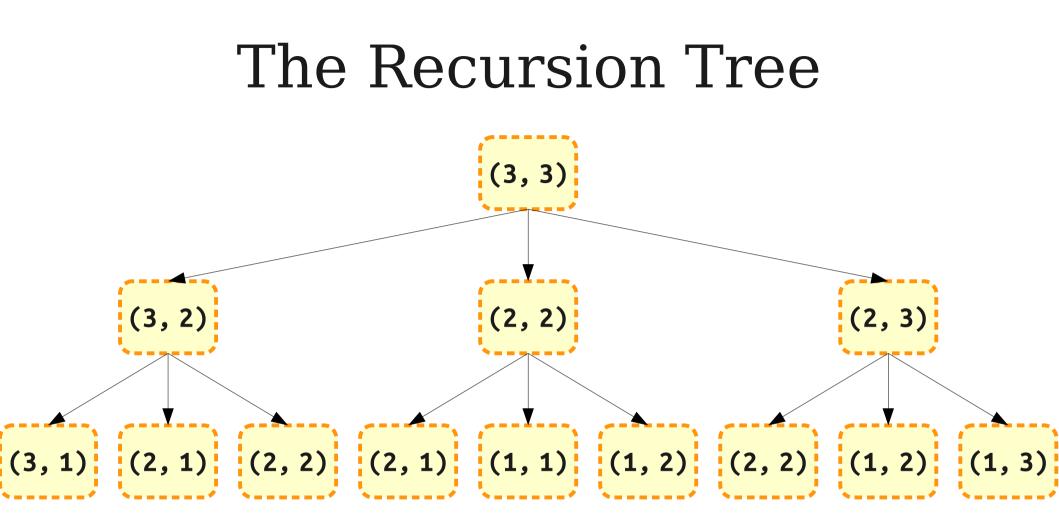
## **Evaluating the Recurrence**

• If we can evaluate this recurrence:

$$OPT(i,j) = \begin{cases} j\delta & if i=0\\ i\delta & if j=0 \end{cases}$$
$$min \begin{cases} \delta + OPT(i-1,j), \\ \delta + OPT(i,j-1), \\ \alpha_{A[i]B[j]} + OPT(i-1,j-1) \end{cases} otherwise$$

We can evaluate the cost of an optimal alignment.

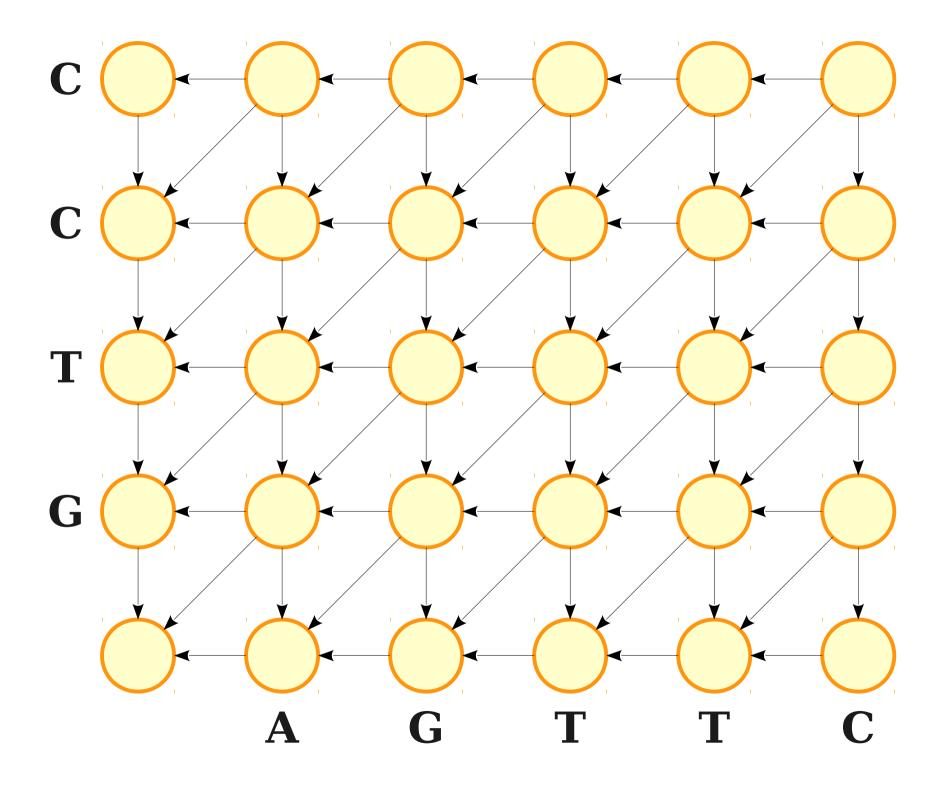
• What happens if we evaluate it directly?

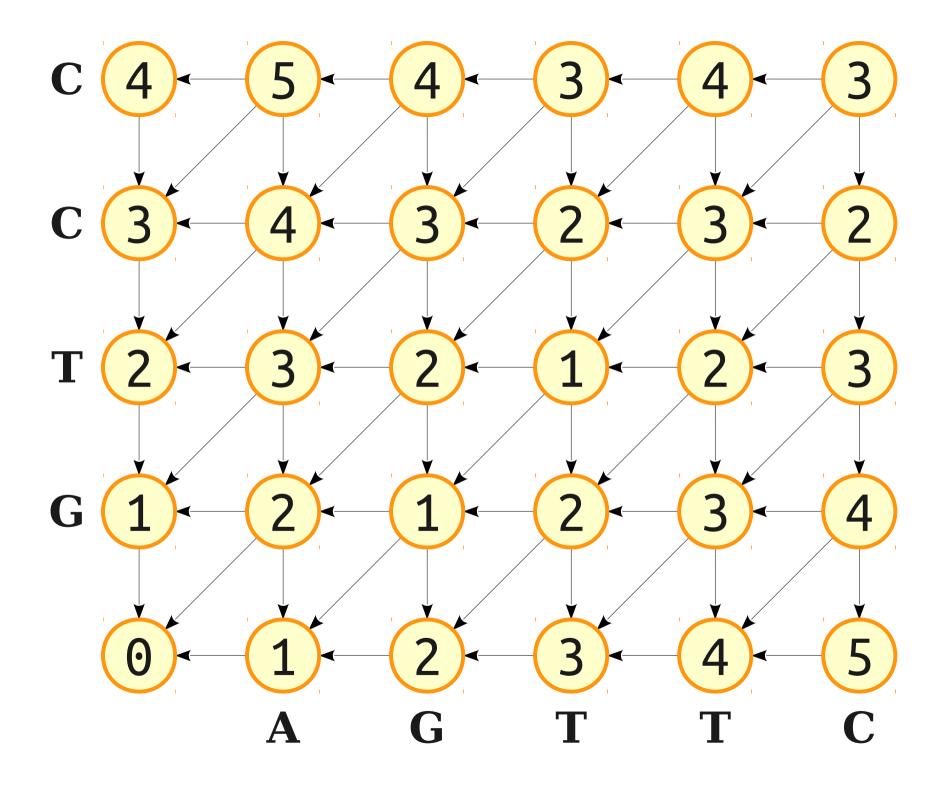


. . .

## Dynamic Programming

- Do we have these three properties?
  - Overlapping subproblems
  - Optimal substructure
  - Polynomial subproblems
- Time to bring out the dynamic programming solution!





## The Algorithm

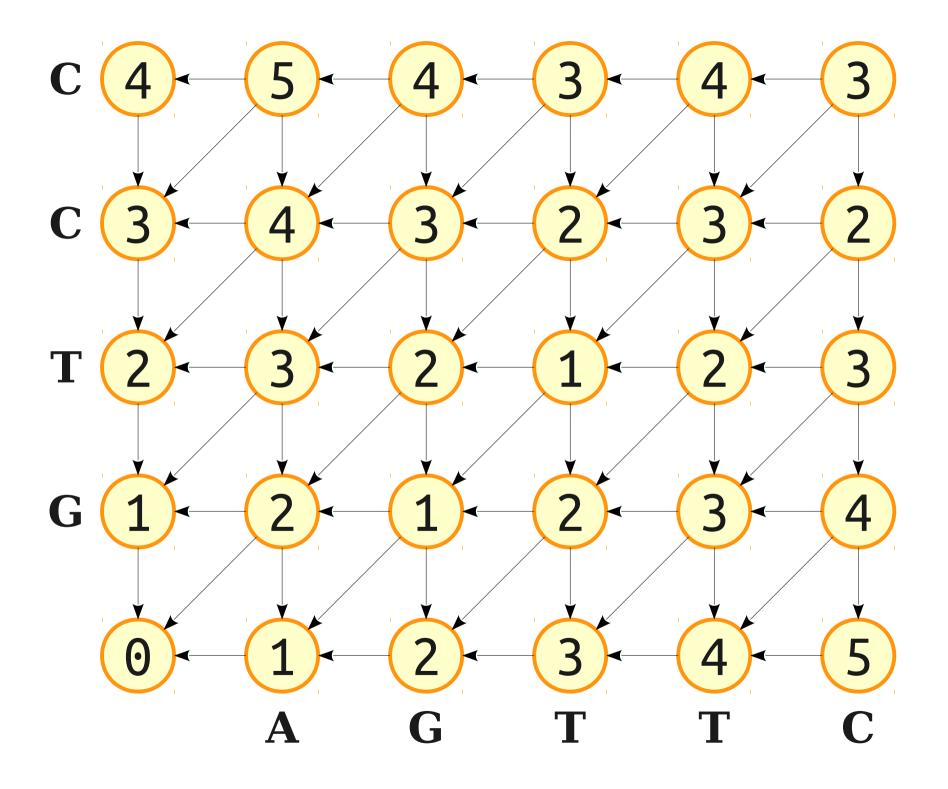
- Create an  $(|A| + 1) \times (|B| + 1)$  grid DP.
- For i = 0 to |A|, set  $DP[i, 0] = \delta i$ .
- For j = 0 to |B|, set  $DP[0, j] = \delta j$ .
- For i = 1 to |A|:
  - For j = 1 to |B|:
    - Set DP[*i*][*j*] to the minimum of • DP[*i* - 1][*j*] +  $\delta$ • DP[*i*][*j* - 1] +  $\delta$ • DP[*i* - 1][*j* - 1] +  $\alpha_{A[i]B[i]}$

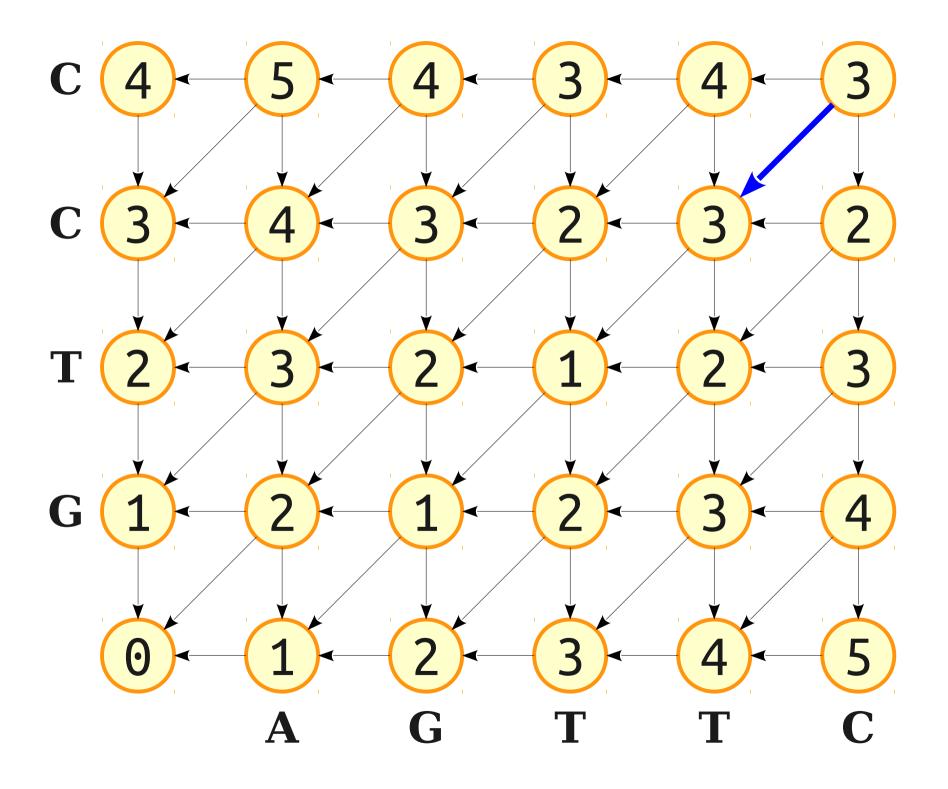
# The Algorithm

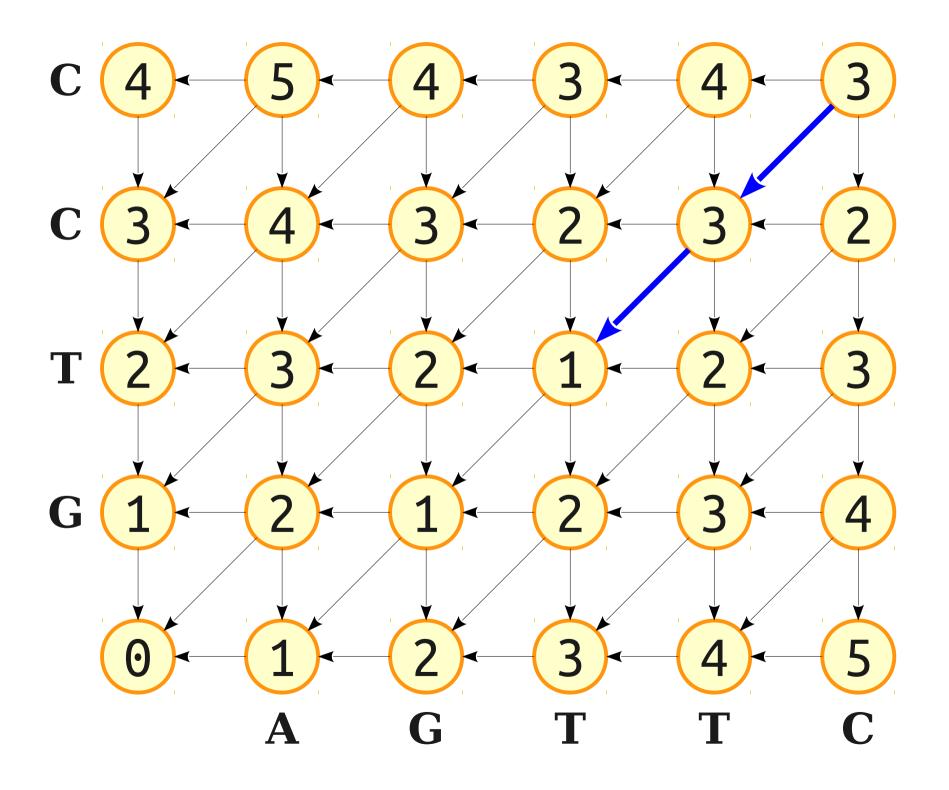
- Create an  $(|A| + 1) \times (|B| + 1)$  grid DP.
- For i = 0 to |A|, set  $DP[i, 0] = \delta i$ .
- For j = 0 to |B|, set  $DP[0, j] = \delta j$ .
- For i = 1 to |A|:
  - For j = 1 to |B|:
    - Set DP[i][j] to the minimum of
      - DP[i 1][j]
        DP[i][j 1]
        DP[i 1][j]
        DP[i 1][j]
        Question: Could we also go column-by-column instead of row-by-row?

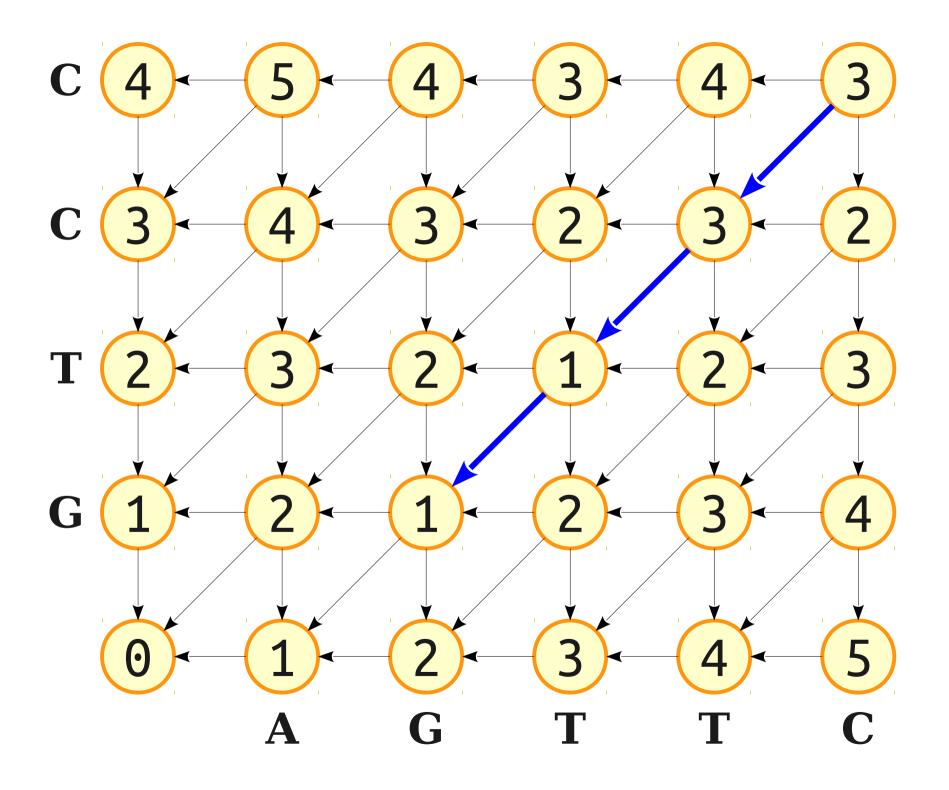
# Analyzing the Algorithm

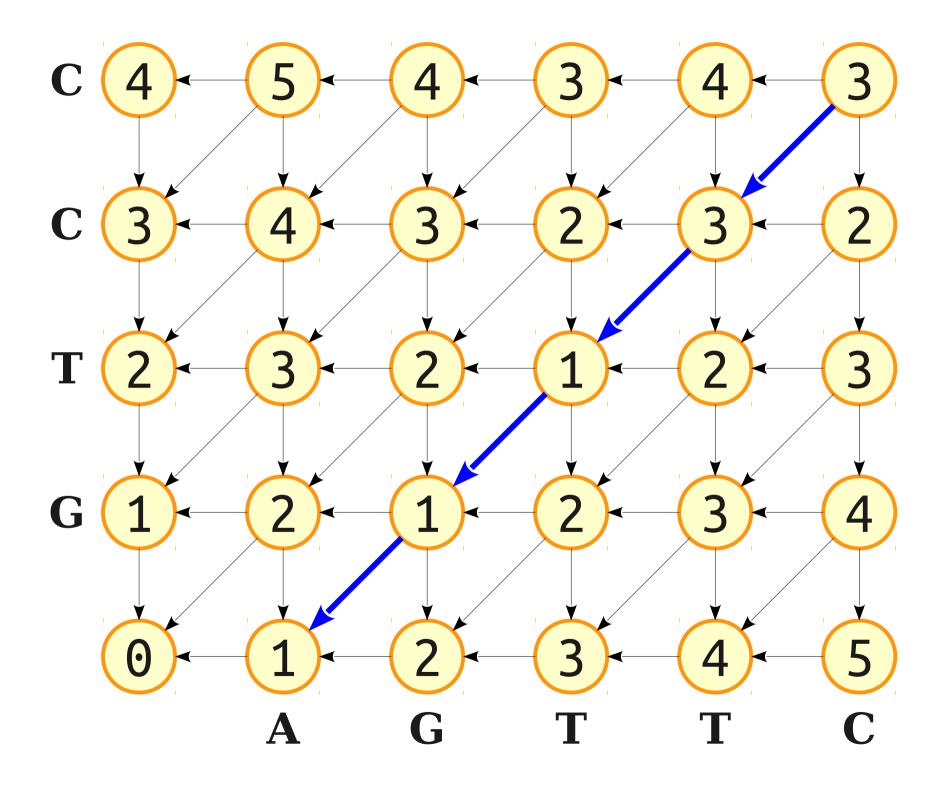
- Let m = |A| and n = |B|.
- What is the runtime of this algorithm?
  - **O(mn)**
- What is the space usage of this algorithm?
  - **O(***mn***)**
- That's *way* less than the total number of possible alignments!

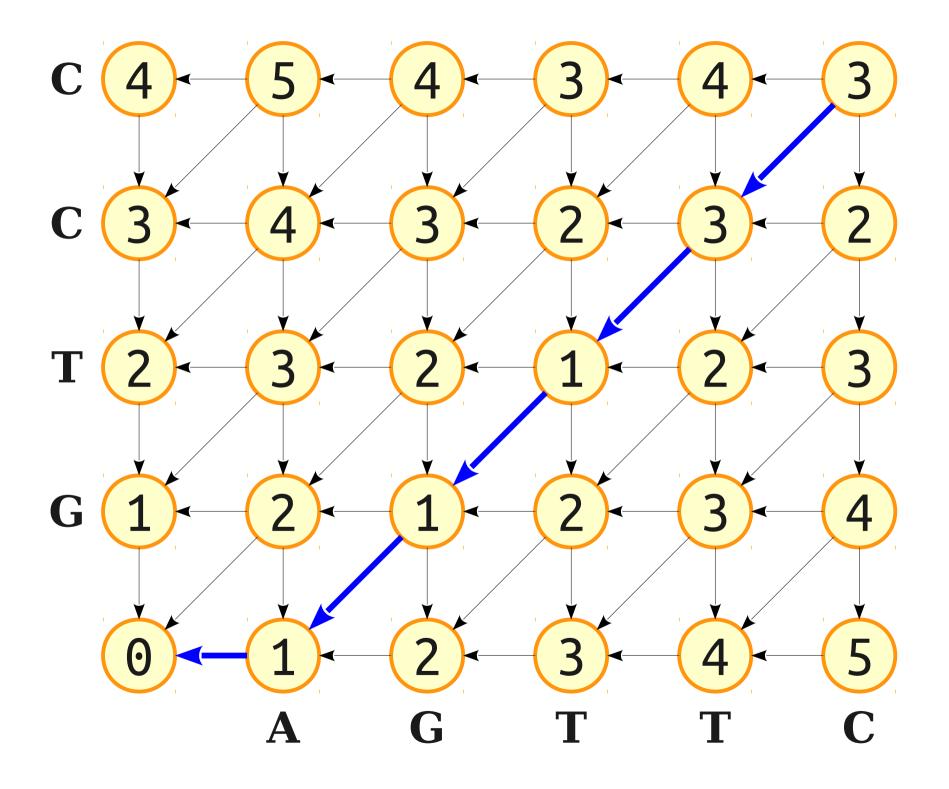


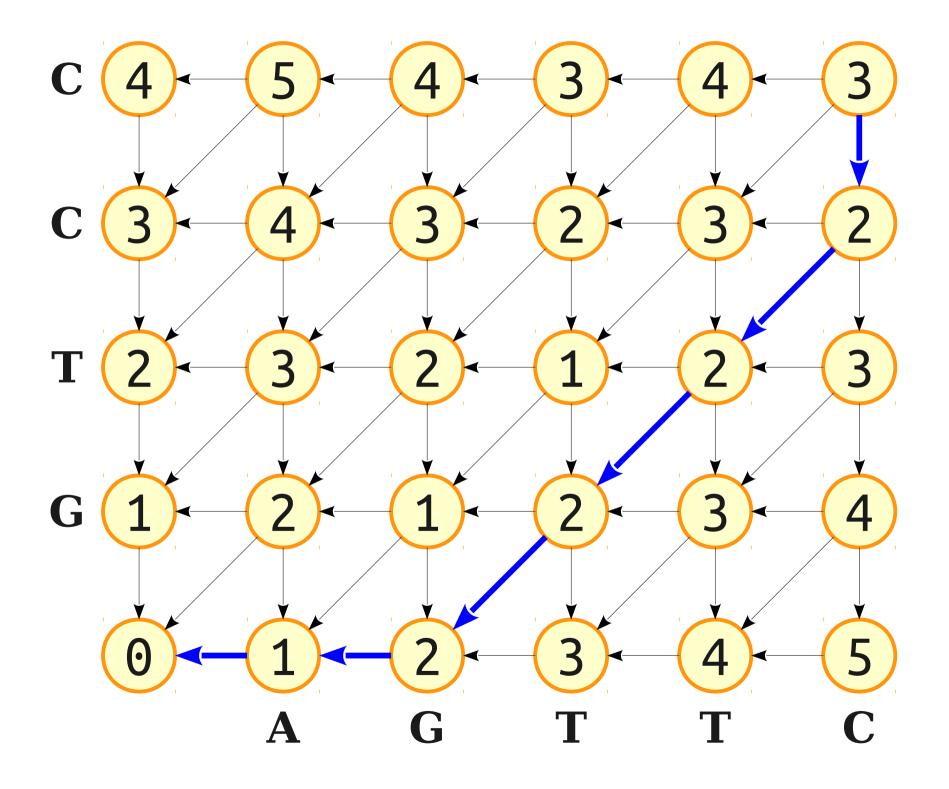


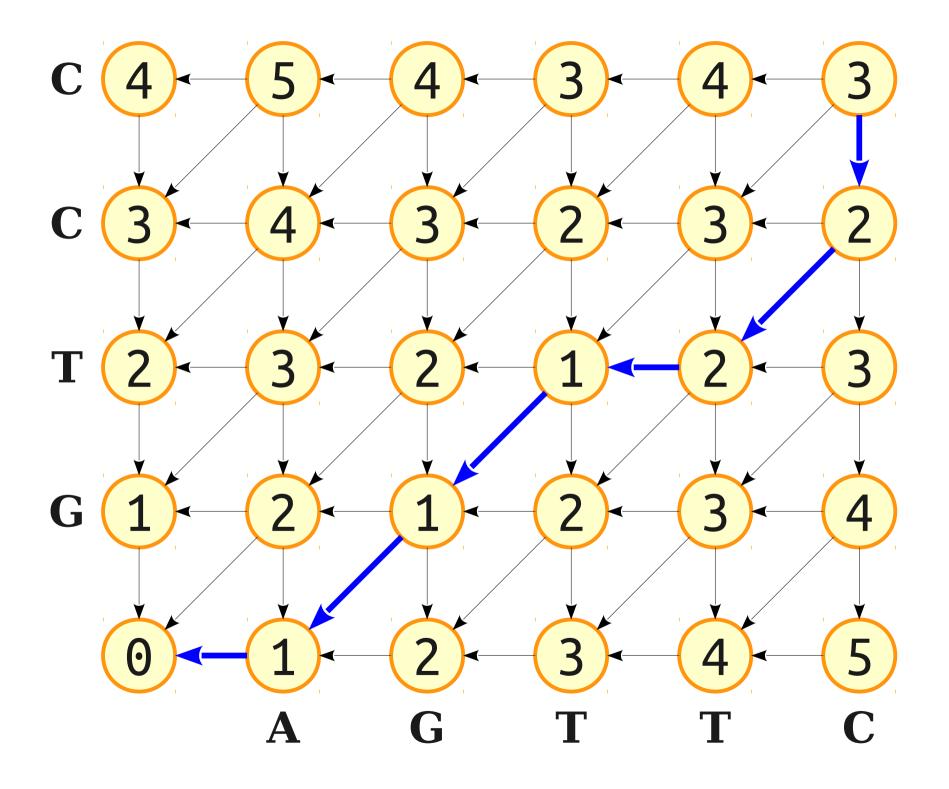


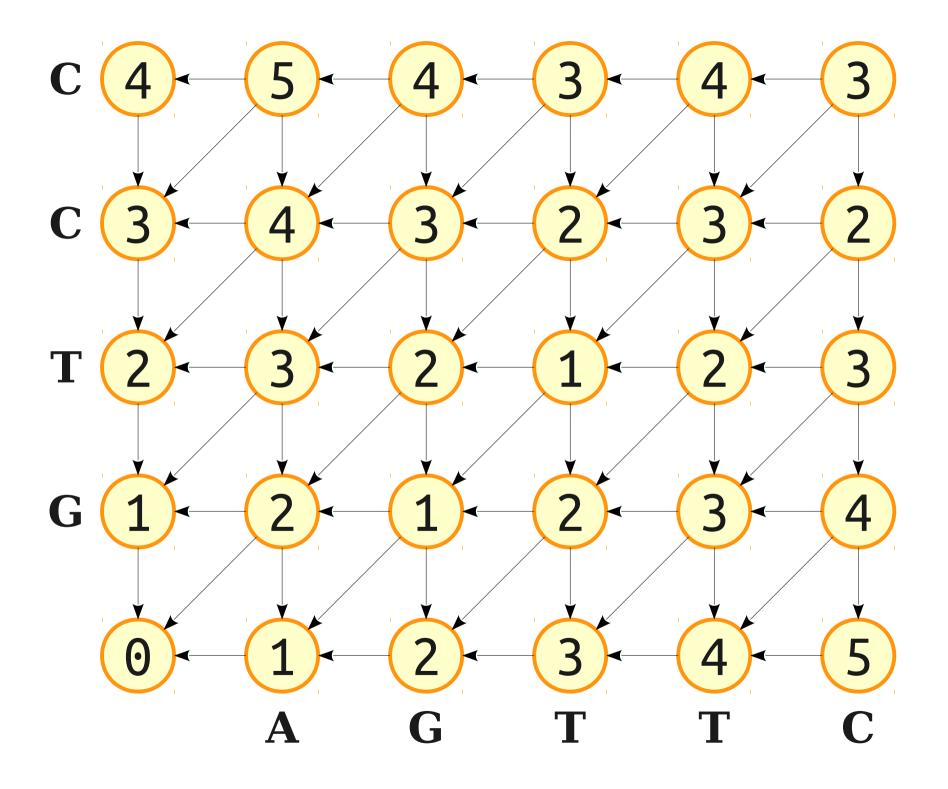


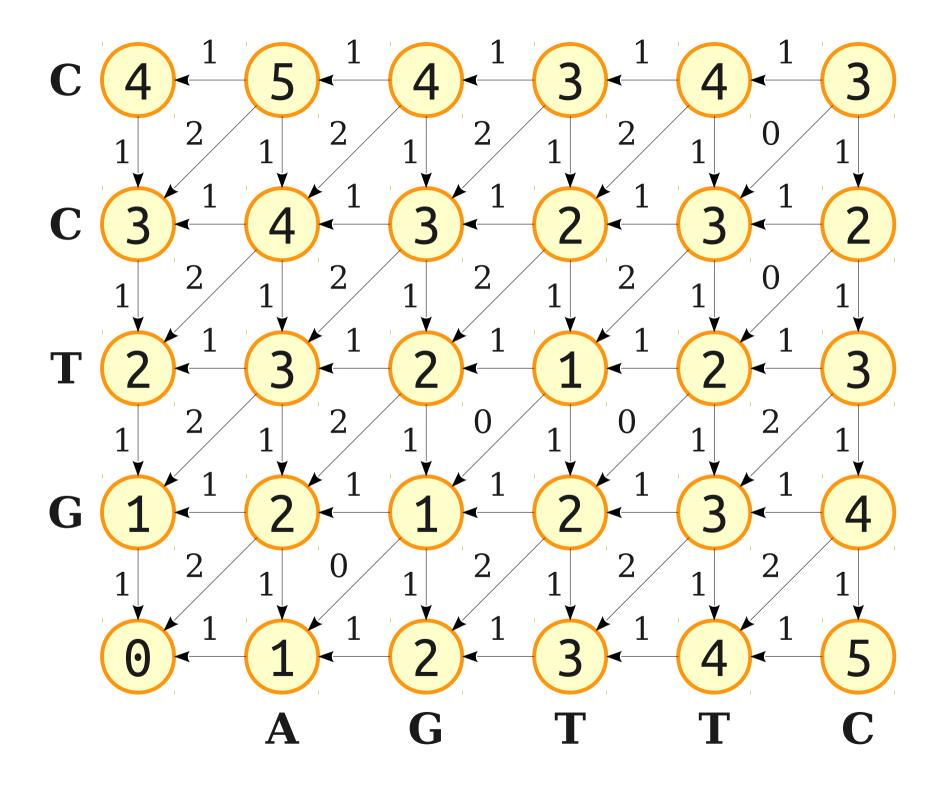


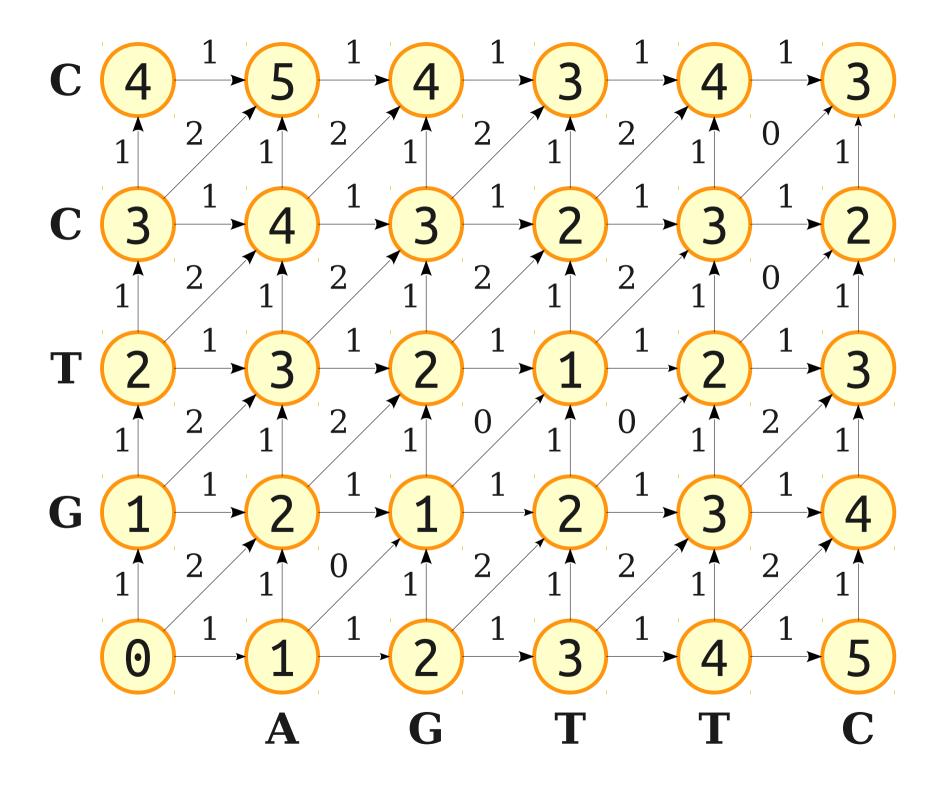


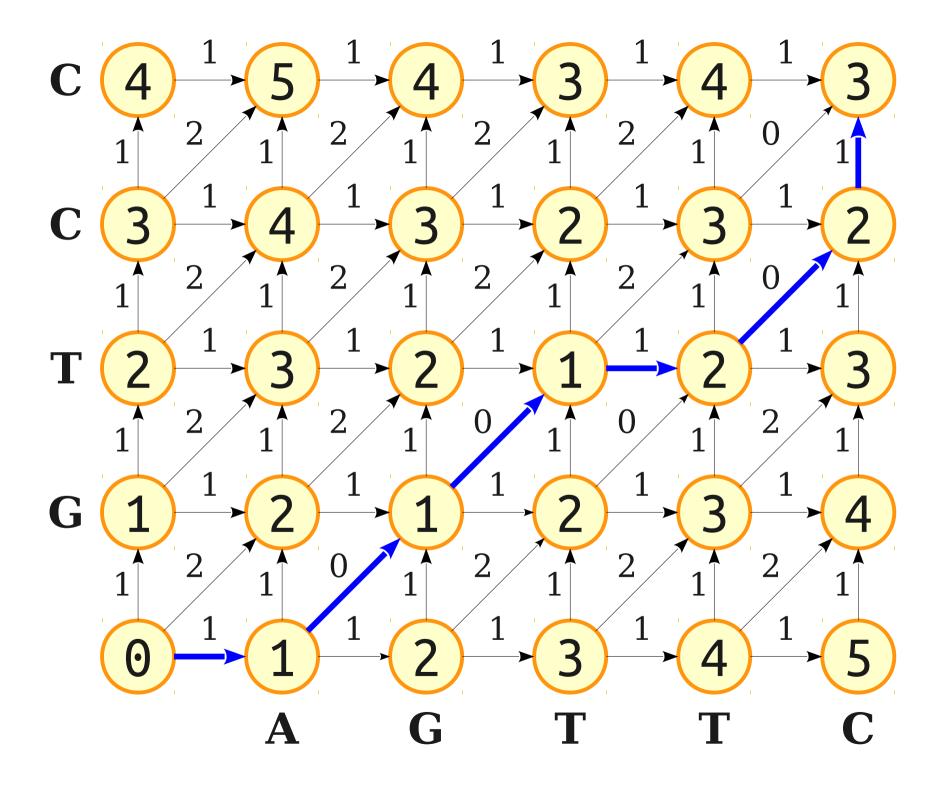


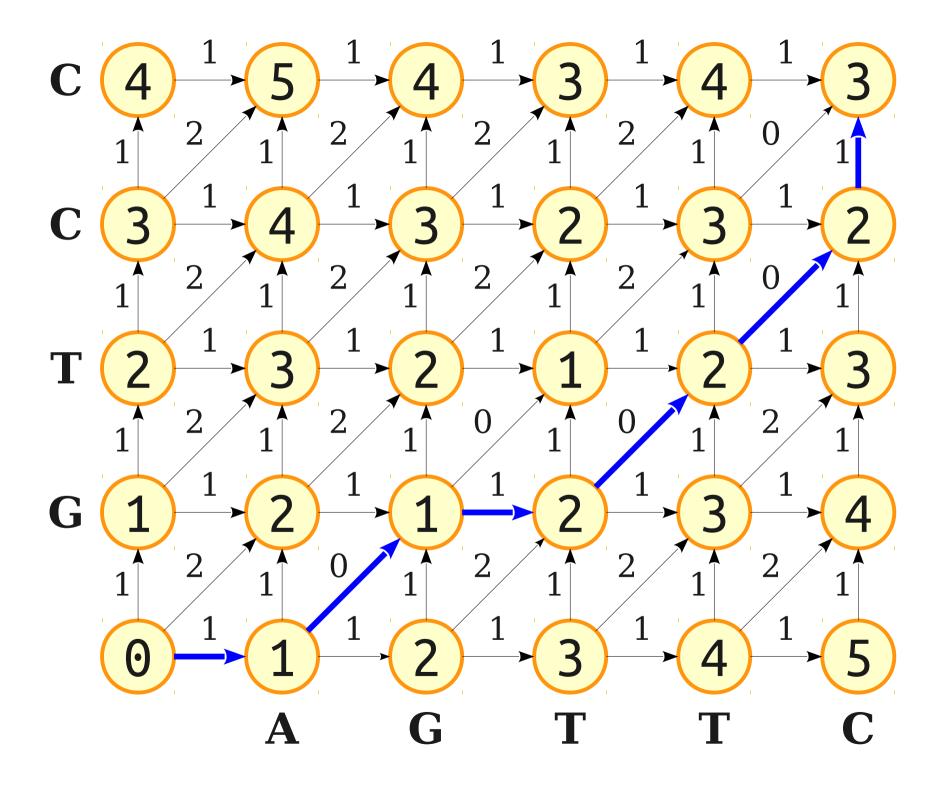


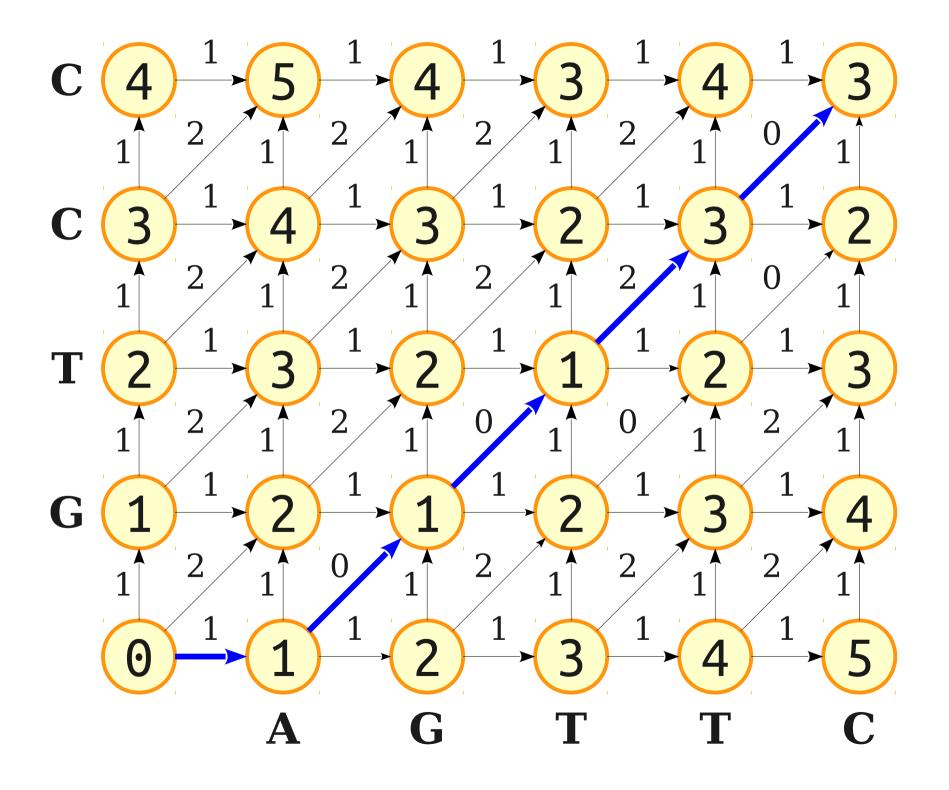












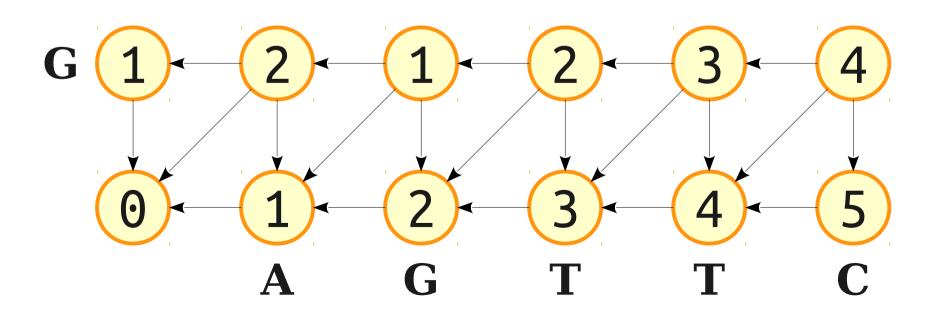
# Finding the Alignment

- As with the DP algorithms we saw last time, we can recover the optimal sequence alignment by running the recurrence in reverse.
- Option 1: Start in the upper-left corner and walk backwards through the grid, at each point choosing a successor such that the total cost matches.
- Option 2: Treat the problem as finding the shortest path from the lower-left corner to the upper-right corner.

С C Т G 5 -(4) **−**(2)**←**(3)**←** 0)-1 --G Т С Т A

С

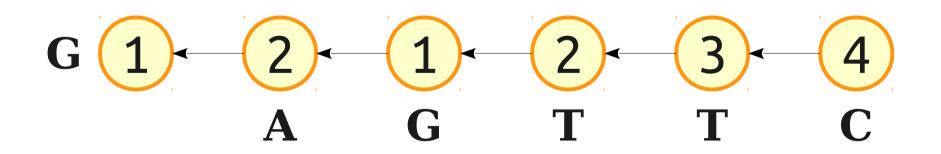
Τ



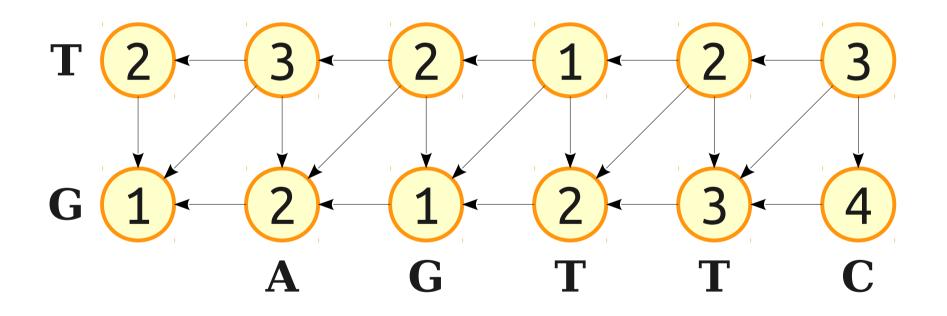
C

C

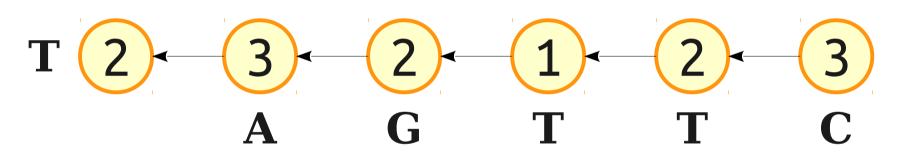
Τ



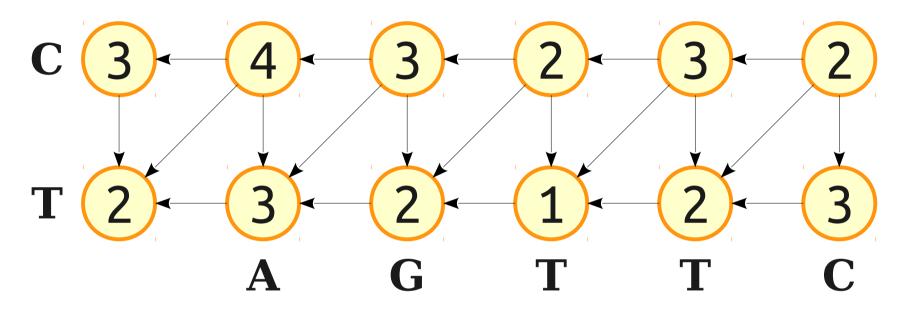
С



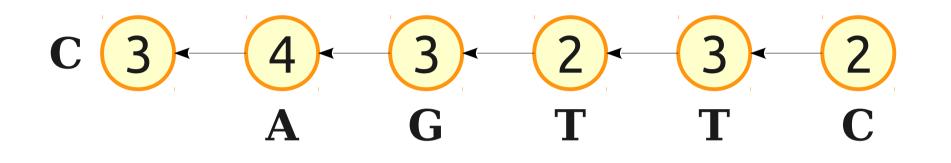
С



G

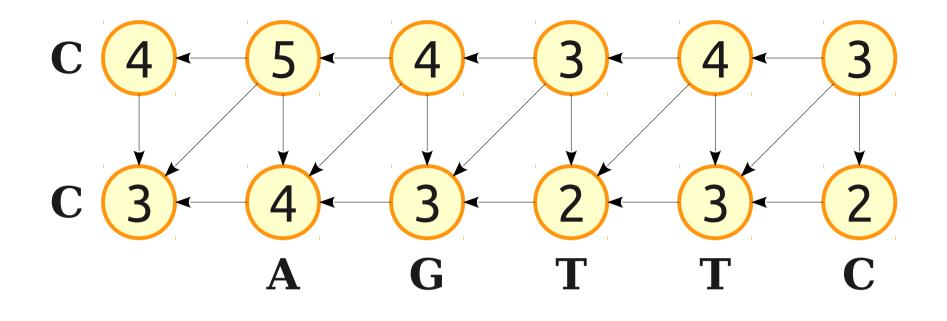


G



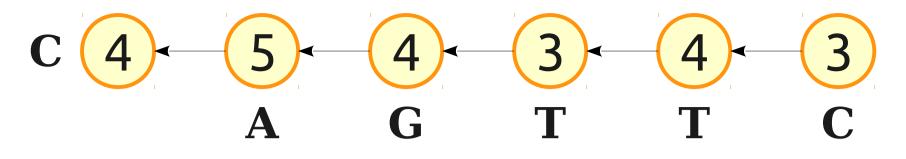
G

Т

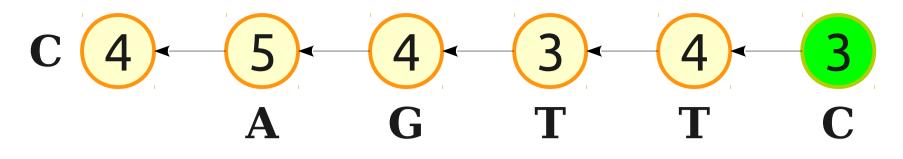


G

Т



- С
- т
- G



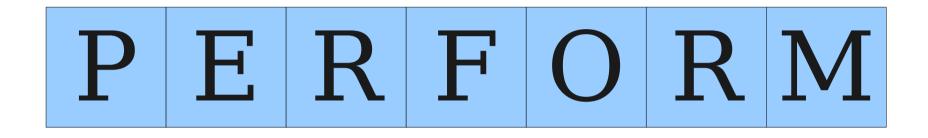
- С
- т
- •
- G

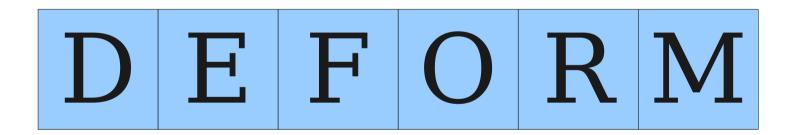
# **Reducing Space**

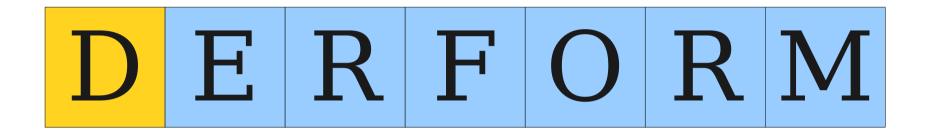
- If you only care about the *value* of the optimal solution and not the actual solution, you can compress the DP table by only storing the last row.
- Runtime now O(mn) with space O(min{m, n}), which is better than before.
- Clever Trick: See Kleinberg and Tardos section 6.7 for a way to get an O(mn)-time, O(m + n)-space algorithm that does recover the optimal solution.

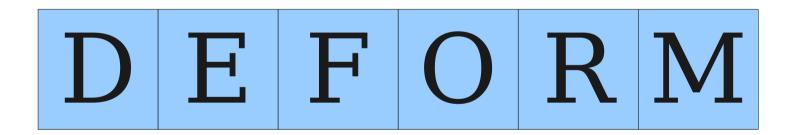
#### A Quick History Lesson

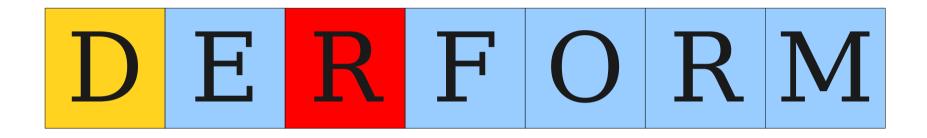
#### Another Algorithm: Levenshtein Distance

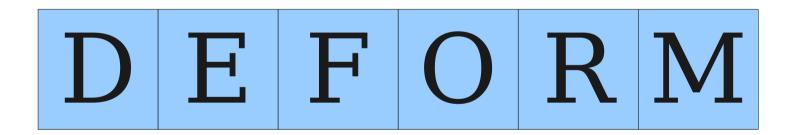


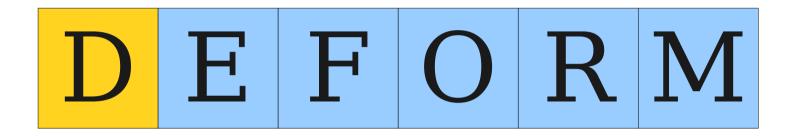


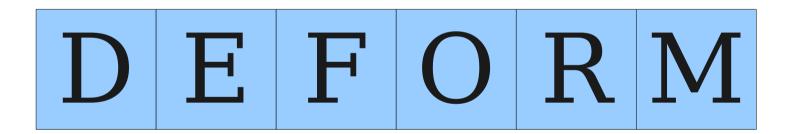


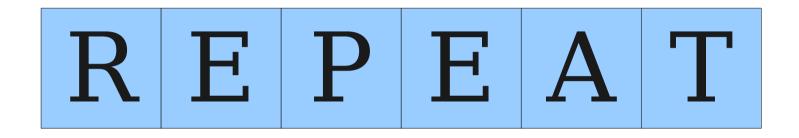


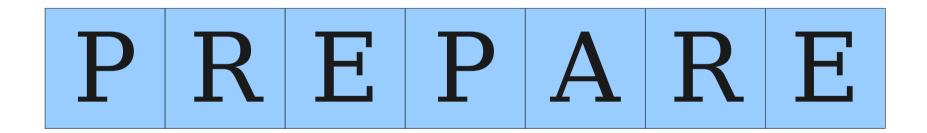


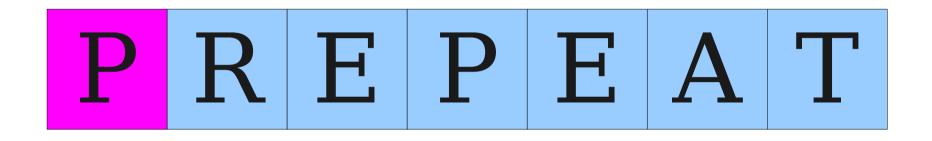


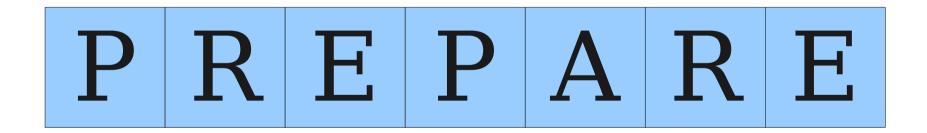


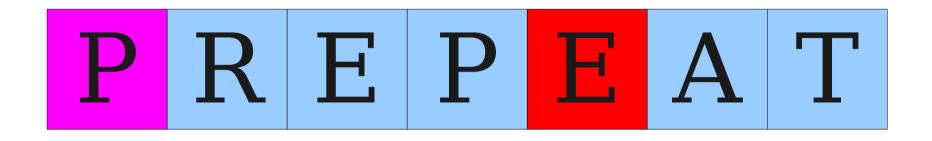


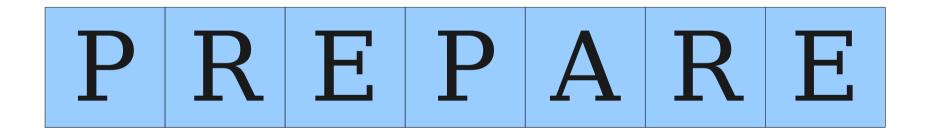


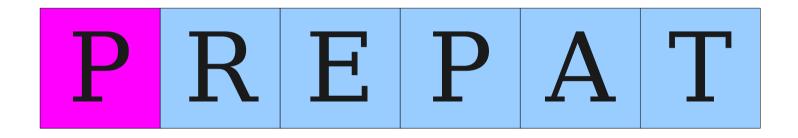


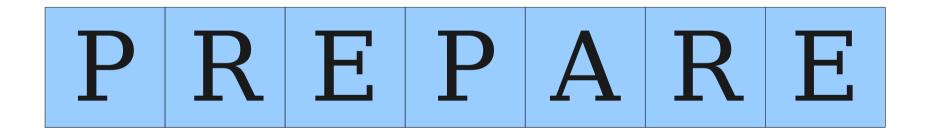


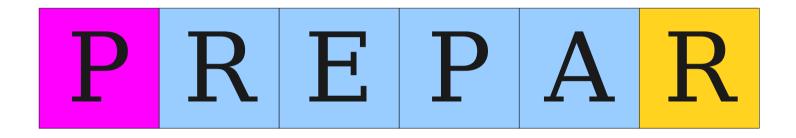


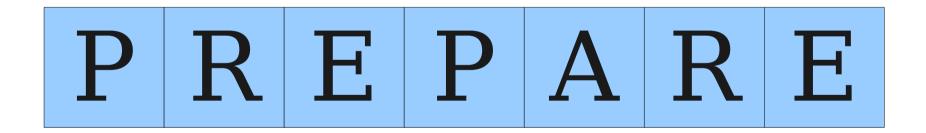


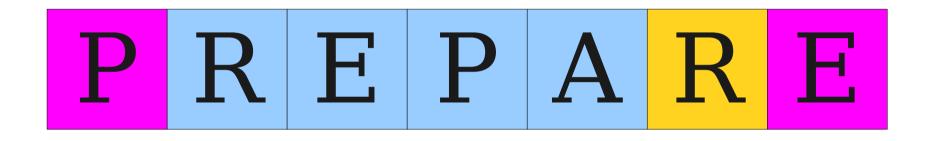


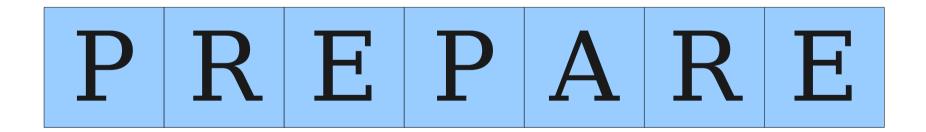






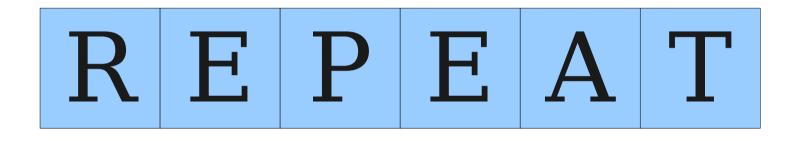


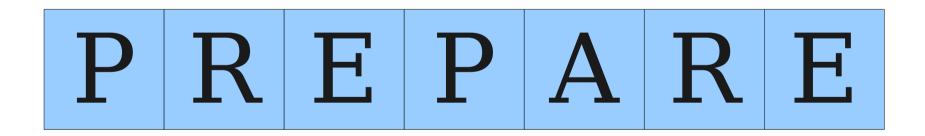




# **Transforming Strings**

- Given a source string and target string, transform the source string into the target string by applying these edits:
  - Insertion of a new character,
  - **Deletion** of an existing character, or
  - **Replacement** of an existing character.
- The minimum number of edits required is called the Levenshtein distance.



















































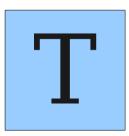
























We can either delete this character or add a matching E up top.

# Our Options

- Look at the first characters of each string.
- We can either
  - Match them together, if they're the same character.
  - Add in a character to the top or bottom to match the other string's character.
  - Delete a character from the top or bottom.
  - Replace the top or bottom character to match the other character.
- When one string becomes empty, the options are to add the remaining characters or delete them from the other string, both of which have the same cost.

#### Some Notation

- Suppose we want to transform the first *i* characters of *A* into the first *j* characters of *B*.
- Let OPT(*i*, *j*) denote the optimal cost of such an alignment.
- Let  $I_{ij}$  be 0 if A[i] = B[j] and 1 otherwise.
- **Claim:** OPT(*i*, *j*) satisfies the following:

 $OPT(i,j) = \begin{cases} j & if i=0\\ if j=0 \end{cases}$  $min \begin{cases} 1+OPT(i,j-1),\\ 1+OPT(i-1,j),\\ I_{ij}+OPT(i-1,j-1) \end{cases} otherwise$ 

#### Seem Familiar?

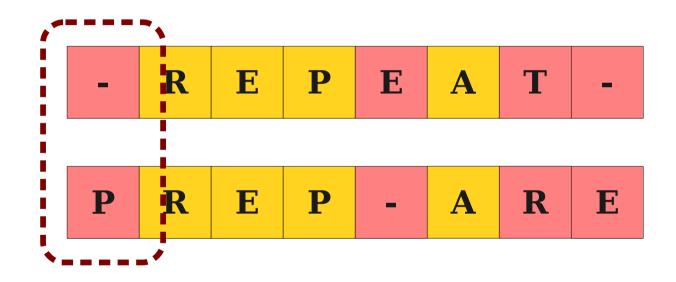
$$\begin{split} & \operatorname{OPT}\left(i,j\right) = \begin{pmatrix} j\delta & & if \ i = 0 \\ i\delta & & if \ j = 0 \end{pmatrix} \\ & \min \begin{pmatrix} \delta + OPT\left(i - 1, j\right), \\ \delta + OPT\left(i, j - 1\right), \\ \alpha_{A[i]B[j]} + OPT\left(i - 1, j - 1\right) \end{pmatrix} & otherwise \end{pmatrix} \\ & \operatorname{OPT}\left(i,j\right) = \begin{pmatrix} j & & if \ i = 0 \\ i & & if \ j = 0 \end{pmatrix} \\ & \min \begin{pmatrix} 1 + OPT\left(i, j - 1\right), \\ 1 + OPT\left(i - 1, j\right), \\ 1 + OPT\left(i - 1, j - 1\right) \end{pmatrix} & otherwise \end{pmatrix} \end{split}$$

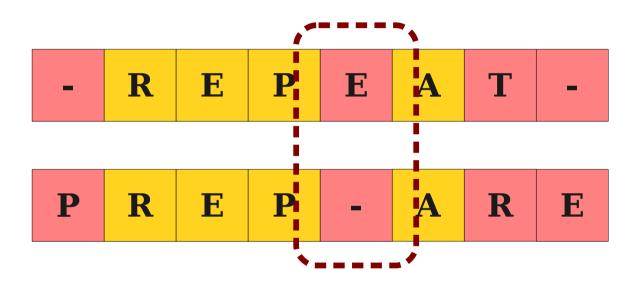
# A Clever Reduction

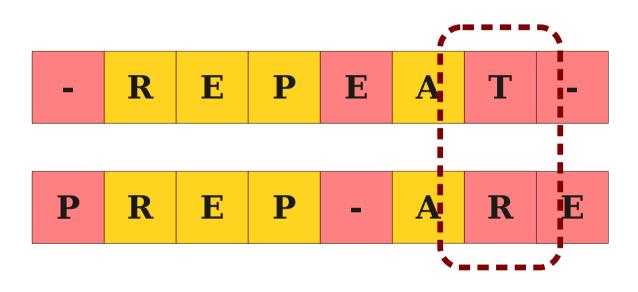
- **Claim:** The Levenshtein distance between two strings is equal to their alignment cost if we set
  - $\delta = 1$ .
  - $\alpha_{ab} = 0$  if a = b and is 1 otherwise.
- **Proof Idea:** First, prove that the previous recurrence holds for Levenshtein distance, then show the recurrence is identical to that of sequence alignment with the above parameterization.

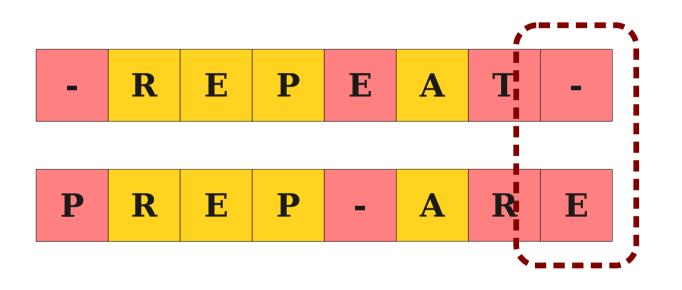
|   | <b>R</b> ] |   | E | E P |   | Þ |   | E A |   |   |   | - |   |
|---|------------|---|---|-----|---|---|---|-----|---|---|---|---|---|
| ] | P          | F | 2 | ]   | Ε | ] | P | ŀ   | ł | ] | R | ] | E |

| - | R | Ε | Р | Ε | Α | Т | - |  |
|---|---|---|---|---|---|---|---|--|
|   |   |   |   |   |   |   |   |  |
| Р | R | Е | Р | - | Α | R | Ε |  |









# Another Intuition

- Run sequence alignment and do the following:
  - For any character matched against a blank, delete that character or insert a matching character into the other string.
  - For any character matched against a mismatched character, replace one character with the other.
- Therefore, can compute distance and transformation in O(mn) time and O(m + n) space, or can get value in O(mn) time and O(min{m, n}) space.

#### Next Time

- Shortest Paths Revisited
- The Bellman-Ford Algorithm
- Network Routing