Dynamic Programming Part One

Announcements

- Problem Set Four due right now if you're using a late period.
- Solutions will be released at end of lecture.
- Problem Set Five due Monday, August 5.
- Feel free to email the staff list (cs161-sum1213-staff@lists.stanford.edu) with questions!
- Final project information will be announced early next week.
- A quick reminder about the Honor Code...

Outline for Today

- Buying Cell Towers
- A surprisingly nuanced problem.
- Dynamic Programming
- A completely different approach to recursion.
- Weighted Activity Selection
- Breaking greedy algorithms, then fixing them.

Example: Cell Tower Purchasing

Buying Cell Towers

137
42
95
272
52

The Cell Tower Problem

- You are given a list of town populations.
- You can build cell towers in any town as long as you don't build towers in adjacent cities.
- Two questions:
- What is the largest number of people you can cover?
- How do you cover them?

Maximize what's left in here.

Maximize what's left in here.

Some Notation

- Let v_{k} be the value of the k th cell tower, 1 -indexed.
- Let OPT(k) be the maximum number of people we can cover using the first k cell towers.
- If C is a set of cell towers, let $C(k)$ denote the number of people covered by the towers in C numbered at most k.
- Claim: OPT(k) satisfies
$\operatorname{OPT}(k)=\left\{\begin{array}{lr}0 & \text { if } k=0 \\ v_{k} & \text { if } k=1 \\ \max \left\{\operatorname{OPT}(k-1), v_{k}+O P T(k-2)\right\} & \text { otherwise }\end{array}\right.$

Theorem: $\operatorname{OPT}(k)$ satisfies the previous recurrence.
Proof: If $k=0$, no people can be covered, so $\mathrm{OPT}(0)=0$. If $k=1$, we can choose tower 1 (value v_{1}) or no towers (value 0), so OPT(1) = v_{1}. So consider $k>1$.

If $k \in C$, then $k-1 \notin C$. Then all towers in C besides k are within the first $k-2$ towers, so $C(k-2) \leq \operatorname{OPT}(k-2)$. Also, $\mathrm{C}(k-2) \geq \mathrm{OPT}(k-2)$; otherwise we could replace all towers in C except k with an optimal set of the first $k-2$ towers to improve C. Thus $\operatorname{OPT}(k)=v_{k}+\operatorname{OPT}(k-2)$.
If $k \notin C$, all towers in C are in the first $k-1$ towers. Thus $C(k-1) \leq \operatorname{OPT}(k-1)$. Also, $C(k-1) \geq \operatorname{OPT}(k-1)$; if not, we could improve C by replacing it with an optimal set of the first $k-1$ towers. Therefore, OPT $(k)=\operatorname{OPT}(k-1)$.
Since the optimal solution for k towers must be the better of these, $\operatorname{OPT}(k)=\max \left\{\operatorname{OPT}(k-1), v_{k}+\operatorname{OPT}(k-2)\right\}$.

A Simple Recursive Algorithm

- Here is a simple recursive algorithm for computing OPT(k):
- If $k=0$, return 0 .
- If $k=1$, return v_{k}.
- Return max $\left\{\mathrm{OPT}(k-1), \mathrm{OPT}(k-2)+v_{k}\right\}$
- This follows directly from the recursive definition of OPT.
- Question: How efficient is this algorithm?

A Problem

- The number of function calls made is given by this recurrence:

$$
\begin{aligned}
& \mathrm{T}(0)=1 \\
& \mathrm{~T}(1)=1 \\
& \mathrm{~T}(n)=\mathrm{T}(n-1)+\mathrm{T}(n-2)+1
\end{aligned}
$$

- Can show that $T(n)=2 \mathrm{~F}_{n+1}-1$, where F_{n+1} is the $(n+1)$ st Fibonacci number.
- $\mathrm{F}_{n}=\Theta\left(\varphi^{n}\right)$, where $\varphi \approx 1.618 \ldots$ is the golden ratio.
- Runtime is exponential!

Redundantly Redoing Completed Work That's Already Been Done

- This algorithm is inefficient because different branches of the recursion recompute the same work.
- Total number of unique recursive calls is low, though the total number of recursive calls is large.
- Idea: Avoid redundant work!
- How can we do this?

A Better Approach

- Key Idea: Compute answers bottom-up rather than top-down.
- Specifically:
- Compute OPT(0) and OPT(1) directly.
- Compute OPT(2) from OPT(0) and OPT(1).
- Compute OPT(3) from OPT(1) and OPT(2).
- Compute OPT(4) from OPT(2) and OPT(3).
- ...
- Compute $\operatorname{OPT}(n)$ from $\operatorname{OPT}(n-1)$ and $\operatorname{OPT}(n-2)$

Computing Bottom-Up

0	14	22	27	47	57	57

68
OPT(0) OPT(1) OPT(2) OPT(3) OPT(4) OPT(5) OPT(6) OPT(7)

$$
\operatorname{OPT}(k)=\left\{\begin{array}{lc}
0 & \text { if } k=0 \\
v_{k} & \text { if } k=1 \\
\max \left\{\operatorname{OPT}(k-1), v_{k}+\operatorname{OPT}(k-2)\right\} & \text { otherwise }
\end{array}\right.
$$

procedure maxCoverage(list A):
let dp be a list of size length(A) + 1, zero-indexed.
$\mathrm{dp}[0]=0$
$\mathrm{dp}[1]=\mathrm{A}[1]$
for $i=2$ to length(A):

$$
\mathrm{dp}[\mathrm{i}]=\max (\mathrm{dp}[\mathrm{i}-1], \mathrm{A}[\mathrm{i}]+\mathrm{dp}[\mathrm{i}-2])
$$

return dp[length(A)]

A Great Solution

- This new algorithm runs in time $O(n)$ and works in $\mathrm{O}(n)$ space.
- Still evaluates the same subproblems, but does so only once and in a different order.
- This style of problem solving is called dynamic programming.

Dynamic Programming

- This algorithm works correctly because of the following three properties:
- Overlapping subproblems: Different branches of the recursion will reuse each other's work.
- Optimal substructure: The optimal solution for one problem instance is formed from optimal solutions for smaller problems.
- Polynomial subproblems: The number of subproblems is small enough to be evaluated in polynomial time.
- A dynamic programming algorithm is one that evaluates all subproblems in a particular order to ensure that all subproblems are evaluated only once.

Recovering the Solution

An Initial Approach

- Our original algorithm uses $\mathrm{O}(n)$ time and $O(n)$ space.
- This new approach might use $\Theta\left(n^{2}\right)$ space just storing the incremental optimal solutions.
- It also might take $\Theta\left(n^{2}\right)$ time copying answers down the line.
- Can we do better?

Recovering the Solution

- Once you have filled in a DP table with values from the subproblems, you can often reconstruct the optimal solution by running the recurrence backwards.
- This is often done with a greedy algorithm, since the algorithm will never get stuck anywhere.
- Consequence of the fact that you know the true values of all subproblems.

Reducing Space Usage

- If you only need the value of the optimal answer, can save space by not storing the whole table.
- For cell towers, all DP values depend only on previous two elements.

$$
\begin{aligned}
& \hline \text { procedure }\text { maxCellTowers(list } A): \\
& \text { let } a=0 \\
& \text { let } b=A[1] \\
& \text { for } i=2 \text { to length }(A): \\
& \text { let newVal }=\max (a+A[i], b) \\
& a=b \\
& b=\text { newVal }
\end{aligned}
$$

return b

A Second Example: Weighted Activity Selection

Weighted Activity Scheduling

- Not all fun activities are equally fun!
- Given a set of activities, which have associated weights, choose the set of non-overlapping activities that will maximize the total weight.
- A more realistic generalization of the problem we saw earlier.

An Algorithmic Insight

- Sort the activities in ascending order of finish time, breaking ties arbitrarily.
- The optimal solution either
- Includes the very last event to finish, in which case it chooses an optimal set of activities from the activities that don't overlap it.
- Doesn't include it, in which case it can choose from all other activities.

Formalizing the Idea

- Number the activities $a_{1}, a_{2}, \ldots, a_{n}$ in ascending order of finishing time, breaking ties arbitrarily. Let w_{k} denote the weight of a_{k}.
- Let $p(i)$ represent the predecessor of activity a_{i} (the latest activity a_{k} where a_{k} ends before a_{i} starts). If there is no such activity, set $p(i)=0$.
- Let $\operatorname{OPT}(k)$ be the maximum weight of activities you can schedule using the first k activities.
- For any schedule S, let $S(k)$ denote the weight of all activities in S numbered at most k.
- Claim: OPT(k) satisfies the recurrence
$\operatorname{OPT}(k)=\left\{\begin{array}{lc}0 & \text { if } k=0 \\ \max \left\{\mathrm{OPT}(k-1), w_{k}+\operatorname{OPT}(p(k))\right\} & \text { otherwise }\end{array}\right.$

Theorem: OPT(k) satisfies the previous recurrence.
Proof: If $k=0, \mathrm{OPT}(0)=0$ since there are no activities. So consider $k>0$.

If $a_{k} \notin S$, then S consists purely of activities drawn from the first $k-1$ activities. Thus $S(k-1) \leq \operatorname{OPT}(k-1)$. Moreover, $S(k-1) \geq \operatorname{OPT}(k-1)$, since otherwise we could replace S with an optimal solution for the first $k-1$ activities to improve upon it. Thus $S(k)=\operatorname{OPT}(k-1)$.
If $a_{k} \in S$, then no activity a_{m} where $p(k)<m<k$ can be in S, since these activities overlap a_{k}. Since all activities in S other than a_{k} are chosen from the first $p(k)$ activities, $S(p(k)) \leq \operatorname{OPT}(p(k)$). Also, $S(p(k)) \geq \operatorname{OPT}(p(k)$) (if not, we could improve S by replacing these activities with an optimal solution for the first $p(k)$ activities.) Therefore, $S(k)=w_{k}+\operatorname{OPT}(p(k))$.
Since OPT(k) must be the better of these two options, we have that $\operatorname{OPT}(k)=\max \left\{\operatorname{OPT}(k-1), w_{k}+\operatorname{OPT}(p(k))\right\} \square$

Cut-and-Paste Arguments

- The style of argument used in the previous proof is sometimes called a cut-and-paste argument.
- To show optimal substructure, assume that some piece of the optimal solution S^{*} is not an optimal solution to a smaller subproblem.
- Show that replacing that piece with the optimal solution to the smaller subproblem improves the allegedly optimal solution S^{*}.
- Conclude, therefore, that S^{*} must include an optimal solution to a smaller subproblem.
- This style of argument will come up repeatedly when discussing dynamic programming.

Evaluating the Recurrence

- As before, evaluating this recurrence directly would be enormously inefficient.
- Why?
- Overlapping subproblems!
- Multiple different branches of the computation all will make the same calls.
- Instead, as before, we can evaluate everything bottom-up.

procedure weightedActivitySelection(list A):
let $d p$ be an array of size length(A) +1 , 0 -indexed.
$\mathrm{dp}[0]=0$
for $i=1$ to length (A) :

$$
\mathrm{dp}[i]=\max (A[i]+\mathrm{dp}[p(i)], \mathrm{dp}[i-1])
$$

return dp[length(A)]
\#9

(7) Bonfire

(5) Navel Gazing

| 0 | 4 | 4 | 5 | 5 | 5 | 7 | 8 | 8 | 12 | 12 | 12 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Why This Works

- As before, this problem exhibits three properties:
- Overlapping subproblems: Many different recursive branches have the same subproblems.
- Optimal substructure: The solution for size n depends on the optimal solutions for smaller sizes.
- Polynomial subproblems: There are only $\mathrm{O}(n)$ total subproblems.
- This is why the DP solution works.

Next Time

- Sequence Alignment
- The Needleman-Wunsch Algorithm
- Levenshtein Distance

