
  

Greedy Algorithms
Part Three



  

Announcements

● Problem Set Four due right now.
● Due on Wednesday with a late day.

● Problem Set Five out, due Monday, August 5.
● Explore greedy algorithms, exchange arguments, 

“greedy stays ahead,” and more!
● Start early.  Greedy algorithms are tricky to design 

and the correctness proofs are challenging.
● Handout: “Guide to Greedy Algorithms” also 

available.
● Problem Set Three graded; will be returned at the 

end of lecture.
● Sorry for the mixup from last time!



  

Outline for Today

● Implementing Prim's Algorithm
● Efficiently finding MSTs.

● Kruskal's Algorithm
● A different algorithm for finding MSTs.

● Disjoint-Set Forests
● A specialized data structure for speeding up 

Kruskal's algorithm.



  

Recap: Prim's Algorithm



  

Prim's Algorithm

● Prim's Algorithm is the following:
● Choose some v ∈ V and let S = {v}.
● Let T = Ø.
● While S ≠ V:

– Choose a least-cost edge e with one 
endpoint in S and one endpoint in V – S.

– Add e to T.
– Add both endpoints of e to S.

● Naive implementation takes time O(mn).



  

A Faster Implementation

● Can speed up using binary heaps:
● Create a priority queue initially holding all edges 

incident to v.
● At each step, dequeue edges from the priority queue 

until we find an edge (x, y) where x ∈ S and y ∉ S.
● Add (x, y) to T.
● Add to the queue all edges incident to y whose 

endpoints aren't in S.
● Each edge is enqueued and dequeued at most 

once. (Why?)
● Total runtime: O(m log m).



  

A Note on Runtimes

● In any graph, m = O(n2).
● Therefore:

  O(m log m) = O(m log (n2))
 O(m log m) = O(m log n)

● This version is more common and we will 
use it going forward.



  

A Different Approach:
Kruskal's Algorithm



  

Kruskal's Algorithm

● Kruskal's Algorithm is the following:
● Let T = Ø.
● For each edge (u, v) sorted by cost:

– If u and v are not already connected in T, add 
(u, v) to T.

● Can prove by induction that the result is 
a spanning tree by showing that
● Exactly n – 1 edges are added.
● No edges are added that close a cycle.



  

Showing Correctness

● The correctness proof for Kruskal's 
algorithm uses an exchange argument 
similar to that for Prim's algorithm.

● Recall: Prove Prim's algorithm is correct 
by looking at cuts in the graph:
● Can swap an edge added by Prim's for a 

specially-chosen edge crossing some cut.
● Since that edge is the lowest-cost edge 

crossing the cut, this cannot increase the 
cost.



  

Correctness Proof Intuition

● Claim: Every edge added by Kruskal's 
algorithm is a least-cost edge crossing 
some cut (S, V – S).
● When the edge was chosen, it did not close a 

cycle.
● Choose S to be the CC of nodes on one end 

of the edge to get cut (S, V – S).
● Edge must be cheapest edge crossing this 

cut, since otherwise we would have selected 
a different edge.



  

Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T*
be an MST. We will prove c(T) = c(T*). If T = T*, we are done.
Otherwise T ≠ T*, so T – T* ≠ Ø. Let (u, v) be an edge in T – T*.

Let S be the CC containing u at the time (u, v) was added to 
T. We claim (u, v) is a least-cost edge crossing cut (S, V – S).  
First, (u, v) crosses the cut, since u and v were not connected 
when Kruskal's algorithm selected (u, v).  Next, if there were 
a lower-cost edge e crossing the cut, e would connect two 
nodes that were not connected.  Thus, Kruskal's algorithm 
would have selected e instead of (u, v), a contradiction.

Since T* is an MST, there is a path from u to v in T*.  The path 
begins in S and ends in V – S, so it contains an edge (x, y) 
crossing the cut. Then T*' = T* ∪ {(u, v)} – {(x, y)} is an ST 
of G and c(T*') = c(T*) + c(u, v) – c(x, y). Since c(x, y) ≥ c(u, v), 
we have c(T*') ≤ c(T*).  Since T* is an MST, c(T*') = c(T*).

Note that |T – T*'| = |T – T*| – 1.  Therefore, if we repeat this 
process once for each edge in T – T*, we will have converted 
T* into T while preserving c(T*).  Thus c(T) = c(T*). ■



  

Implementing Kruskal's Algorithm



  

Kruskal's Algorithm

● High-level overview of Kruskal's algorithm:
● Let T = Ø.
● For each edge (u, v) sorted by cost:

– If u and v are not connected by T, add (u, v) to T.

● Can visit edges in order by sorting them in 
time O(m log n).

● Can check whether u and v are connected in 
time O(n) by doing DFS. (Why?)

● Total time required: O(mn).



  

Speeding up Kruskal's

● The “bottleneck” in Kruskal's algorithm 
is checking whether a pair of nodes are 
connected to one another.

● Goal: Optimize queries of the form “are 
x and y connected?”

● To do this, we will introduce a new data 
structure called the disjoint-set forest.



  

Set Partitions

● A partition of a set S is a family X of 
nonempty sets where each element of S 
belongs to exactly one set in X.

● Goal: Build a data structure (called a 
disjoint-set data structure) that 
efficiently supports three operations:
● make-set(v), which places v into its own set,
● union(u, v), which combines the sets 

containing u and v into one set, and
● in-same(u, v), which returns whether u and 

v belong to the same set.



  

Kruskal's Algorithm

● Using our new data structure:

● Let T = Ø.
● Let S be a disjoint-set data structure.
● For each v ∈ V:

– Call S.make-set(v)
● For each edge (u, v) sorted by cost:

– If S.in-same(u, v) is false:
● Add (u, v) to T.
● Call S.union(u, v).



  

Representatives

● Given a partition of a set S, we can choose one 
representative from each of the sets in the 
partition.

● Representatives give a simple proxy for which set 
an element belongs to: two elements are in the 
same set in the partition iff their set has the same 
representative.



  

Data Structure Idea

● Idea: Associate each element in a set 
with a representative from that set.

● To determine if two nodes are in the 
same set, check if they have the same 
representative.

● To link two sets together, change all 
elements of the two sets so they 
reference a single representative.



  

Using Representatives

● If there are n total elements, what is the 
cost of looking up a representative?
● O(1)

● If there are n total elements, what is the 
cost of merging two sets together?
● O(n)

● Can we improve this?



  

Hierarchical Representatives

● If there are n total elements, what is the 
cost of looking up a representative?
● O(n)

● If there are n total elements, what is the 
cost of merging two sets together?
● O(n)

● The inefficiency arises because the path 
from any node to its representative can 
be very large.

● Can we fix that?



  

Union by Size

● Idea: Store in each node the number of 
nodes that count it as a representative.

● To merge the sets containing two nodes 
together:
● Find the representatives of each.
● Choose one of the representatives with the 

least number of nodes below it.
● Set its representative to the other node.
● Update the total number of nodes below the 

other node.



  

Analyzing Union by Size

● The runtime of these operations depends on the height 
of the trees formed this way.

● Claim: A tree with height k contains at least 2k nodes.

● Proof Idea: Use induction.

● Trees with height 0 start with 20 = 1 nodes.
● Merging two trees of unequal heights always results 

in a single tree of the height of the larger of the two.
● Merging two trees of height k into a tree of height 

k + 1 results in a tree with at least 2 · 2k = 2k + 1 
nodes.

● Corollary: If there are n total nodes, all operations 
take O(log n) time.



  

Kruskal's Algorithm

● Using our new data structure:

● Let T = Ø.
● Let S be a disjoint-set data structure.
● For each v ∈ V:

– Call S.make-set(v)
● For each edge (u, v) sorted by cost:

– If S.in-same(u, v) is false:
● Add (u, v) to T.
● Call S.union(u, v).

● Total runtime: O(m log n).



  

Looking Forward

● It is possible to speed up our data structure 
by using two modifications:
● Path Compression: After looking up a 

representative, change the pointers of all 
visited nodes to directly point to the 
representative.

● Union-by-Rank: Link trees based on height 
rather than number of nodes.

● New runtime: m total operations takes time 
O(m α(m)), where α(m) is a ridiculously 
slowly-growing function.



  

Next Time

● Dynamic Programming
● Purchasing Cell Towers
● A Different Approach to Recursion
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