

Greedy Algorithms
Part Three

Announcements

● Problem Set Four due right now.
● Due on Wednesday with a late day.

● Problem Set Five out, due Monday, August 5.
● Explore greedy algorithms, exchange arguments,

“greedy stays ahead,” and more!
● Start early. Greedy algorithms are tricky to design

and the correctness proofs are challenging.
● Handout: “Guide to Greedy Algorithms” also

available.
● Problem Set Three graded; will be returned at the

end of lecture.
● Sorry for the mixup from last time!

Outline for Today

● Implementing Prim's Algorithm
● Efficiently finding MSTs.

● Kruskal's Algorithm
● A different algorithm for finding MSTs.

● Disjoint-Set Forests
● A specialized data structure for speeding up

Kruskal's algorithm.

Recap: Prim's Algorithm

Prim's Algorithm

● Prim's Algorithm is the following:
● Choose some v ∈ V and let S = {v}.
● Let T = Ø.
● While S ≠ V:

– Choose a least-cost edge e with one
endpoint in S and one endpoint in V – S.

– Add e to T.
– Add both endpoints of e to S.

● Naive implementation takes time O(mn).

A Faster Implementation

● Can speed up using binary heaps:
● Create a priority queue initially holding all edges

incident to v.
● At each step, dequeue edges from the priority queue

until we find an edge (x, y) where x ∈ S and y ∉ S.
● Add (x, y) to T.
● Add to the queue all edges incident to y whose

endpoints aren't in S.
● Each edge is enqueued and dequeued at most

once. (Why?)
● Total runtime: O(m log m).

A Note on Runtimes

● In any graph, m = O(n2).
● Therefore:

 O(m log m) = O(m log (n2))
 O(m log m) = O(m log n)

● This version is more common and we will
use it going forward.

A Different Approach:
Kruskal's Algorithm

Kruskal's Algorithm

● Kruskal's Algorithm is the following:
● Let T = Ø.
● For each edge (u, v) sorted by cost:

– If u and v are not already connected in T, add
(u, v) to T.

● Can prove by induction that the result is
a spanning tree by showing that
● Exactly n – 1 edges are added.
● No edges are added that close a cycle.

Showing Correctness

● The correctness proof for Kruskal's
algorithm uses an exchange argument
similar to that for Prim's algorithm.

● Recall: Prove Prim's algorithm is correct
by looking at cuts in the graph:
● Can swap an edge added by Prim's for a

specially-chosen edge crossing some cut.
● Since that edge is the lowest-cost edge

crossing the cut, this cannot increase the
cost.

Correctness Proof Intuition

● Claim: Every edge added by Kruskal's
algorithm is a least-cost edge crossing
some cut (S, V – S).
● When the edge was chosen, it did not close a

cycle.
● Choose S to be the CC of nodes on one end

of the edge to get cut (S, V – S).
● Edge must be cheapest edge crossing this

cut, since otherwise we would have selected
a different edge.

Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T*
be an MST. We will prove c(T) = c(T*). If T = T*, we are done.
Otherwise T ≠ T*, so T – T* ≠ Ø. Let (u, v) be an edge in T – T*.

Let S be the CC containing u at the time (u, v) was added to
T. We claim (u, v) is a least-cost edge crossing cut (S, V – S).
First, (u, v) crosses the cut, since u and v were not connected
when Kruskal's algorithm selected (u, v). Next, if there were
a lower-cost edge e crossing the cut, e would connect two
nodes that were not connected. Thus, Kruskal's algorithm
would have selected e instead of (u, v), a contradiction.

Since T* is an MST, there is a path from u to v in T*. The path
begins in S and ends in V – S, so it contains an edge (x, y)
crossing the cut. Then T*' = T* ∪ {(u, v)} – {(x, y)} is an ST
of G and c(T*') = c(T*) + c(u, v) – c(x, y). Since c(x, y) ≥ c(u, v),
we have c(T*') ≤ c(T*). Since T* is an MST, c(T*') = c(T*).

Note that |T – T*'| = |T – T*| – 1. Therefore, if we repeat this
process once for each edge in T – T*, we will have converted
T* into T while preserving c(T*). Thus c(T) = c(T*). ■

Implementing Kruskal's Algorithm

Kruskal's Algorithm

● High-level overview of Kruskal's algorithm:
● Let T = Ø.
● For each edge (u, v) sorted by cost:

– If u and v are not connected by T, add (u, v) to T.

● Can visit edges in order by sorting them in
time O(m log n).

● Can check whether u and v are connected in
time O(n) by doing DFS. (Why?)

● Total time required: O(mn).

Speeding up Kruskal's

● The “bottleneck” in Kruskal's algorithm
is checking whether a pair of nodes are
connected to one another.

● Goal: Optimize queries of the form “are
x and y connected?”

● To do this, we will introduce a new data
structure called the disjoint-set forest.

Set Partitions

● A partition of a set S is a family X of
nonempty sets where each element of S
belongs to exactly one set in X.

● Goal: Build a data structure (called a
disjoint-set data structure) that
efficiently supports three operations:
● make-set(v), which places v into its own set,
● union(u, v), which combines the sets

containing u and v into one set, and
● in-same(u, v), which returns whether u and

v belong to the same set.

Kruskal's Algorithm

● Using our new data structure:

● Let T = Ø.
● Let S be a disjoint-set data structure.
● For each v ∈ V:

– Call S.make-set(v)
● For each edge (u, v) sorted by cost:

– If S.in-same(u, v) is false:
● Add (u, v) to T.
● Call S.union(u, v).

Representatives

● Given a partition of a set S, we can choose one
representative from each of the sets in the
partition.

● Representatives give a simple proxy for which set
an element belongs to: two elements are in the
same set in the partition iff their set has the same
representative.

Data Structure Idea

● Idea: Associate each element in a set
with a representative from that set.

● To determine if two nodes are in the
same set, check if they have the same
representative.

● To link two sets together, change all
elements of the two sets so they
reference a single representative.

Using Representatives

● If there are n total elements, what is the
cost of looking up a representative?
● O(1)

● If there are n total elements, what is the
cost of merging two sets together?
● O(n)

● Can we improve this?

Hierarchical Representatives

● If there are n total elements, what is the
cost of looking up a representative?
● O(n)

● If there are n total elements, what is the
cost of merging two sets together?
● O(n)

● The inefficiency arises because the path
from any node to its representative can
be very large.

● Can we fix that?

Union by Size

● Idea: Store in each node the number of
nodes that count it as a representative.

● To merge the sets containing two nodes
together:
● Find the representatives of each.
● Choose one of the representatives with the

least number of nodes below it.
● Set its representative to the other node.
● Update the total number of nodes below the

other node.

Analyzing Union by Size

● The runtime of these operations depends on the height
of the trees formed this way.

● Claim: A tree with height k contains at least 2k nodes.

● Proof Idea: Use induction.

● Trees with height 0 start with 20 = 1 nodes.
● Merging two trees of unequal heights always results

in a single tree of the height of the larger of the two.
● Merging two trees of height k into a tree of height

k + 1 results in a tree with at least 2 · 2k = 2k + 1
nodes.

● Corollary: If there are n total nodes, all operations
take O(log n) time.

Kruskal's Algorithm

● Using our new data structure:

● Let T = Ø.
● Let S be a disjoint-set data structure.
● For each v ∈ V:

– Call S.make-set(v)
● For each edge (u, v) sorted by cost:

– If S.in-same(u, v) is false:
● Add (u, v) to T.
● Call S.union(u, v).

● Total runtime: O(m log n).

Looking Forward

● It is possible to speed up our data structure
by using two modifications:
● Path Compression: After looking up a

representative, change the pointers of all
visited nodes to directly point to the
representative.

● Union-by-Rank: Link trees based on height
rather than number of nodes.

● New runtime: m total operations takes time
O(m α(m)), where α(m) is a ridiculously
slowly-growing function.

Next Time

● Dynamic Programming
● Purchasing Cell Towers
● A Different Approach to Recursion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

