## Greedy Algorithms <br> Part Three

## Announcements

- Problem Set Four due right now.
- Due on Wednesday with a late day.
- Problem Set Five out, due Monday, August 5.
- Explore greedy algorithms, exchange arguments, "greedy stays ahead," and more!
- Start early. Greedy algorithms are tricky to design and the correctness proofs are challenging.
- Handout: "Guide to Greedy Algorithms" also available.
- Problem Set Three graded; will be returned at the end of lecture.
- Sorry for the mixup from last time!


## Outline for Today

- Implementing Prim's Algorithm
- Efficiently finding MSTs.
- Kruskal's Algorithm
- A different algorithm for finding MSTs.
- Disjoint-Set Forests
- A specialized data structure for speeding up Kruskal's algorithm.

Recap: Prim's Algorithm

## Prim's Algorithm

- Prim's Algorithm is the following:
- Choose some $v \in V$ and let $S=\{v\}$.
- Let $T=\varnothing$.
- While $S \neq V$ :
- Choose a least-cost edge $e$ with one endpoint in $S$ and one endpoint in $V-S$.
- Add $e$ to $T$.
- Add both endpoints of $e$ to $S$.
- Naive implementation takes time $\mathrm{O}(m n)$.


## A Faster Implementation

- Can speed up using binary heaps:
- Create a priority queue initially holding all edges incident to $v$.
- At each step, dequeue edges from the priority queue until we find an edge $(x, y)$ where $x \in S$ and $y \notin S$.
- Add $(x, y)$ to $T$.
- Add to the queue all edges incident to $y$ whose endpoints aren't in $S$.
- Each edge is enqueued and dequeued at most once. (Why?)
- Total runtime: O(m log m).


## A Note on Runtimes

- In any graph, $m=O\left(n^{2}\right)$.
- Therefore:

$$
\begin{aligned}
\mathrm{O}(m \log m) & =\mathrm{O}\left(m \log \left(n^{2}\right)\right) \\
& =\mathbf{O}(\boldsymbol{m} \log \boldsymbol{n})
\end{aligned}
$$

- This version is more common and we will use it going forward.

A Different Approach: Kruskal's Algorithm

## Kruskal's Algorithm

- Kruskal's Algorithm is the following:
- Let $T=$ Ø.
- For each edge ( $u, v$ ) sorted by cost:
- If $u$ and $v$ are not already connected in $T$, add $(u, v)$ to $T$.
- Can prove by induction that the result is a spanning tree by showing that
- Exactly $n$ - 1 edges are added.
- No edges are added that close a cycle.


## Showing Correctness

- The correctness proof for Kruskal's algorithm uses an exchange argument similar to that for Prim's algorithm.
- Recall: Prove Prim's algorithm is correct by looking at cuts in the graph:
- Can swap an edge added by Prim's for a specially-chosen edge crossing some cut.
- Since that edge is the lowest-cost edge crossing the cut, this cannot increase the cost.


## Correctness Proof Intuition

- Claim: Every edge added by Kruskal's algorithm is a least-cost edge crossing some cut ( $S, V-S$ ).
- When the edge was chosen, it did not close a cycle.
- Choose $S$ to be the CC of nodes on one end of the edge to get cut ( $S, V-S$ ).
- Edge must be cheapest edge crossing this cut, since otherwise we would have selected a different edge.

Theorem: Kruskal's algorithm always produces an MST.
Proof: Let $T$ be the tree produced by Kruskal's algorithm and $T^{*}$ be an MST. We will prove $c(T)=c\left(T^{*}\right)$. If $T=T^{*}$, we are done. Otherwise $T \neq T^{*}$, so $T-T^{*} \neq \emptyset$. Let $(u, v)$ be an edge in $T-T^{*}$. Let $S$ be the CC containing $u$ at the time ( $u, v$ ) was added to $T$. We claim ( $u, v$ ) is a least-cost edge crossing cut $(S, V-S)$. First, ( $u, v$ ) crosses the cut, since $u$ and $v$ were not connected when Kruskal's algorithm selected ( $u, v$ ). Next, if there were a lower-cost edge $e$ crossing the cut, $e$ would connect two nodes that were not connected. Thus, Kruskal's algorithm would have selected $e$ instead of ( $u, v$ ), a contradiction.
Since $T^{*}$ is an MST, there is a path from $u$ to $v$ in $T^{*}$. The path begins in $S$ and ends in $V-S$, so it contains an edge ( $x, y$ ) crossing the cut. Then $T^{*}=T^{*} \cup\{(u, v)\}-\{(x, y)\}$ is an ST of $G$ and $c\left(T^{*}\right)=c\left(T^{*}\right)+c(u, v)-c(x, y)$. Since $c(x, y) \geq c(u, v)$, we have $c\left(T^{*}\right) \leq c\left(T^{*}\right)$. Since $T^{*}$ is an MST, $c\left(T^{*}\right)=c\left(T^{*}\right)$.
Note that $\left|T-T^{*}\right|=\left|T-T^{*}\right|-1$. Therefore, if we repeat this process once for each edge in $T-T^{*}$, we will have converted $T^{*}$ into $T$ while preserving $c\left(T^{*}\right)$. Thus $c(T)=c\left(T^{*}\right)$.

## Implementing Kruskal's Algorithm

## Kruskal's Algorithm

- High-level overview of Kruskal's algorithm:
- Let $T=\varnothing$.
- For each edge ( $u, v$ ) sorted by cost:
- If $u$ and $v$ are not connected by $T$, add $(u, v)$ to $T$.
- Can visit edges in order by sorting them in time $O(m \log n)$.
- Can check whether $u$ and $v$ are connected in time $O(n)$ by doing DFS. (Why?)
- Total time required: O(mn).


## Speeding up Kruskal's

- The "bottleneck" in Kruskal's algorithm is checking whether a pair of nodes are connected to one another.
- Goal: Optimize queries of the form "are $x$ and $y$ connected?"
- To do this, we will introduce a new data structure called the disjoint-set forest.


## Set Partitions

- A partition of a set $S$ is a family $X$ of nonempty sets where each element of $S$ belongs to exactly one set in $X$.
- Goal: Build a data structure (called a disjoint-set data structure) that efficiently supports three operations:
- make-set(v), which places $v$ into its own set,
- union( $\mathbf{u}, \boldsymbol{v}$ ), which combines the sets containing $u$ and $v$ into one set, and
- in-same ( $\mathbf{u}, \boldsymbol{v}$ ), which returns whether $u$ and $v$ belong to the same set.


## Kruskal's Algorithm

- Using our new data structure:
- Let $T=\varnothing$.
- Let $S$ be a disjoint-set data structure.
- For each $v \in V$ :
- Call S.make-set(v)
- For each edge $(u, v)$ sorted by cost:
- If S.in-same( $u, v$ ) is false:
- Add ( $u, v$ ) to $T$.
- Call S.union $(u, v)$.


## Representatives

- Given a partition of a set $S$, we can choose one representative from each of the sets in the partition.
- Representatives give a simple proxy for which set an element belongs to: two elements are in the same set in the partition iff their set has the same representative.



## Data Structure Idea

- Idea: Associate each element in a set with a representative from that set.
- To determine if two nodes are in the same set, check if they have the same representative.
- To link two sets together, change all elements of the two sets so they reference a single representative.


## Using Representatives

- If there are $n$ total elements, what is the cost of looking up a representative?
- O(1)
- If there are $n$ total elements, what is the cost of merging two sets together?
- O(n)
- Can we improve this?


## Hierarchical Representatives

- If there are $n$ total elements, what is the cost of looking up a representative?
- O(n)
- If there are $n$ total elements, what is the cost of merging two sets together?
- O(n)
- The inefficiency arises because the path from any node to its representative can be very large.
- Can we fix that?


## Union by Size

- Idea: Store in each node the number of nodes that count it as a representative.
- To merge the sets containing two nodes together:
- Find the representatives of each.
- Choose one of the representatives with the least number of nodes below it.
- Set its representative to the other node.
- Update the total number of nodes below the other node.


## Analyzing Union by Size

- The runtime of these operations depends on the height of the trees formed this way.
- Claim: A tree with height $k$ contains at least $2^{k}$ nodes.
- Proof Idea: Use induction.
- Trees with height 0 start with $2^{0}=1$ nodes.
- Merging two trees of unequal heights always results in a single tree of the height of the larger of the two.
- Merging two trees of height $k$ into a tree of height $k+1$ results in a tree with at least $2 \cdot 2^{k}=2^{k+1}$ nodes.
- Corollary: If there are $n$ total nodes, all operations take O(log $n$ ) time.


## Kruskal's Algorithm

- Using our new data structure:
- Let $T=\varnothing$.
- Let $S$ be a disjoint-set data structure.
- For each $v \in V$ :
- Call S.make-set(v)
- For each edge $(u, v)$ sorted by cost:
- If S.in-same $(u, v)$ is false:
- Add ( $u, v$ ) to $T$.
- Call S.union $(u, v)$.
- Total runtime: $\mathbf{O}(\boldsymbol{m} \log \boldsymbol{n})$.


## Looking Forward

- It is possible to speed up our data structure by using two modifications:
- Path Compression: After looking up a representative, change the pointers of all visited nodes to directly point to the representative.
- Union-by-Rank: Link trees based on height rather than number of nodes.
- New runtime: $m$ total operations takes time $\mathrm{O}(m \alpha(m))$, where $\alpha(m)$ is a ridiculously slowly-growing function.


## Next Time

- Dynamic Programming
- Purchasing Cell Towers
- A Different Approach to Recursion

