

Greedy Algorithms
Part Two

Announcements

● Problem Set Three graded, will be
returned at end of lecture.

● Problem Set Four due on Monday, or on
Wednesday if you're using a late period.

Outline for Today

● Minimum Spanning Trees
● What's the cheapest way to connect a graph?

● Prim's Algorithm
● A simple and efficient algorithm for finding

minimum spanning trees.

● Exchange Arguments
● Another approach to proving greedy

algorithms work correctly.

Trees

A tree is an undirected,
acyclic, connected graph.

An undirected graph is called minimally
connected iff it is connected and removing

any edge disconnects it.

Theorem: An undirected graph is a tree iff
it is minimally connected.

An undirected graph is called maximally
acyclic iff adding any missing edge

introduces a cycle.

Theorem: An undirected graph is a tree iff
it is maximally acyclic.

Theorem: An undirected graph is a tree iff
it is connected and |E| = |V| – 1.

Trees

● A tree is an undirected graph G = (V, E)
that is connected and acyclic.

● All the following are equivalent:
● G is a tree.
● G is connected and acyclic.
● G is minimally connected (removing any

edge from G disconnects it.)
● G is maximally acyclic (adding any edge

creates a cycle)
● G is connected and |E| = |V| - 1.

Theorem: Let T be a tree and (u, v) ∉ T. The graph
T ∪ {(u, v)} contains a cycle. For any edge (x, y) on
the cycle, the graph T' = T ∪ {(u, v)} – {(x, y)} is a tree.

Proof: Since (u, v) ∉ T and (x, y) ∈ T ∪ {(u, v)}, we know
|T'| = |T| + 1 – 1 = |T| = |V| – 1. Therefore, we will
show that T' is connected to conclude T' is a tree.

Consider any s, t ∈ V. Since T is connected, there is some
path from s to t in T. If that path does not cross (x, y), or if
(x, y) = (u, v), then this path is also a path from s to t in T',
so s and t are connected in T'. Otherwise, suppose the
path from s to t crosses (x, y). Assume without loss of
generality that the path starts at s, goes to x, crosses
(x, y), then goes from y to t. Since (u, v) and (x, y) are part
of the same cycle, we can modify the original path from s
to t so that instead of crossing (x, y), it goes around the
cycle from x to y. This new path is then a path from s to t
in T', so s and t are connected in T'. Thus any arbitrary
pair of nodes are connected in T', so T' is connected. ■

Minimum Spanning Trees

 6
1

5

4

 8 7 6

7

12

 2

 9 1

3

Spanning Trees

● Let G = (V, E). A spanning tree (or ST) of G
is a graph (V, T) such that (V, T) is a tree.
● For notational simplicity: we'll identify a spanning

tree with just the set of edges T.

● Suppose that each edge (u, v) ∈ E is assigned a
cost c(u, v).

● The cost of a tree T, denoted c(T), is the sum
of the costs of the edges in T:

● A minimum spanning tree (or MST) of G is
a spanning tree T* of G with minimum cost.

c (T) = ∑
(u,v)∈T

c (u,v)

Minimum Spanning Trees

● There are many greedy algorithms for finding
MSTs:
● Borůvka's algorithm (1926)
● Kruskal's algorithm (1956)
● Prim's algorithm (1930, rediscovered 1957)

● We will explore Kruskal's algorithm and
Prim's algorithm in this course.

● Lots of research into this problem: parallel
implementions, optimal serial
implementations, implementations
harnessing bitwise operations, etc...

Theorem: Let G be a connected, weighted graph. If all edge
weights in G are distinct, G has exactly one MST.

Proof: Since G is connected, it has at least one MST. We will
show G has at most one MST by contradiction. Assume T₁
and T₂ are distinct MSTs of G. Since |T₁| = |T₂|, the set
T₁ Δ T₂ is nonempty, so it contains a least-cost edge (u, v).
Assume without loss of generality that (u, v) ∈ T₁.

Consider T₂ ∪ {(u, v)}. Since T₂ is a tree, this graph has a
cycle C involving (u, v). Let (x, y) be the edge in C with the
highest total cost. We claim c(x, y) > c(u, v). To see this,
note that every edge in C other than (u, v) belongs either to
T₂ ∩ T₁ or to T₂ – T₁. Some edge in the cycle must belong to
T₂ – T₁, or otherwise (u, v) closes a cycle in T₁. The most
expensive edge in T₂ – T₁ costs more than c(u, v); otherwise
(u, v) would not be the cheapest edge in T₁ Δ T₂. Thus the
highest-cost edge in the cycle has cost at least c(u, v).

As proven earlier, T' = T₂ ∪ {(u, v)} – {(x, y)} is a spanning
tree of G. But c(T') = c(T₂) + c(u, v) – c(x, y) < c(T₂), which
contradicts that T₂ is an MST. Thus our assumption was
wrong and there is at most one MST in G. ■

The Cycle Property

● This previous proof relies on a property of
MSTs called the cycle property.

Theorem (Cycle Property): If (x, y) is an
edge in G and is the heaviest edge on
some cycle C, then (x, y) does not belong
to any MST of G.

● Proof along the lines of what we just saw: if it
did belong to some MST, adding the cheapest
edge on that cycle and removing (x, y) leaves a
lower-cost spanning tree.

Finding MSTs: Prim's Algorithm

Prim's Algorithm

● Prim's Algorithm is the following:
● Choose some v ∈ V and let S = {v}.
● Let T = Ø.
● While S ≠ V:

– Choose a least-cost edge e with one
endpoint in S and one endpoint in V – S.

– Add e to T.
– Add both endpoints of e to S.

● (Quick history: This was originally invented by
Czech mathematician Vojtěch Jarník in 1930.)

Proving Legality

● Claim: Prim's algorithm produces a
spanning tree of G.

● Proof idea: Show by induction that T
forms a spanning tree of the nodes in S.
Conclude that since eventually S = V,
that T is a spanning tree for G.

Proving Optimality

● To show that Prim's algorithm produces
an MST, we will work in two steps:
● First, as a warmup, show that Prim's

algorithm produces an MST as long as all
edge costs are distinct.

● Then, for the full proof, show that Prim's
algorithm produces an MST even if there are
multiple edges with the same cost.

● In doing so, we will see the exchange
argument as another method for
proving a greedy algorithm is optimal.

The Intuition

● By construction, every edge added in Prim's
algorithm is the cheapest edge crossing some
cut (S, V – S).

● Any tree other than the one produced by
Prim's algorithm has to exclude some edge
that was included by Prim's algorithm.

● Adding that edge closes a cycle that crosses
the cut.

● Deleting an edge in the cycle that crosses the
cut strictly lowers the cost of the tree.

Theorem: If G is a connected, weighted graph with distinct
edge weights, Prim's algorithm correctly finds an MST.

Proof: Let T be the spanning tree found by Prim's algorithm
and T* be the MST of G. We will prove T = T* by
contradiction. Assume T ≠ T*. Therefore, T – T* ≠ Ø. Let
(u, v) be any edge in T – T*.

When (u, v) was added to T, it was the least-cost edge
crossing some cut (S, V – S). Since T* is an MST, there
must be a path from u to v in T*. This path begins in S and
ends in V – S, so there must be some edge (x, y) along that
path where x ∈ S and y ∈ V – S. Since (u, v) is the least-
cost edge crossing (S, V – S), we have c(u, v) < c(x, y).

Let T*' = T* ∪ {(u, v)} – {(x, y)}. Since (x, y) is on the
cycle formed by adding (u, v), this means T*' is a spanning
tree. However, c(T*') = c(T*) + c(u, v) – c(x, y) < c(T*),
contradicting that T* is an MST.

We have reached a contradiction, so our assumption must
have been wrong. Thus T = T*, so T is an MST. ■

Exchange Arguments

● This proof of optimality for Prim's algorithm uses
an argument called an exchange argument.

● General structure is as follows *

● Assume the greedy algorithm does not produce the
optimal solution, so the greedy and optimal
solutions are different.

● Show how to exchange some part of the optimal
solution with some part of the greedy solution in a
way that improves the optimal solution.

● Reach a contradiction and conclude the greedy and
optimal solutions must be the same.

● (* This assumes there is a unique optimal solution;
we'll generalize this shortly.)

The Cut Property

● The previous correctness proof relies on a
property of MSTs called the cut property:

Theorem (Cut Property): Let (S, V – S)
be a nontrivial cut in G (i.e. S ≠ Ø and S ≠ V).
If (u, v) is the lowest-cost edge crossing
(S, V – S), then (u, v) is in every MST of G.

● Proof uses an exchange argument: swap out the
lowest-cost edge crossing the cut for some other
edge crossing the cut.

One Problem

● This proof of correctness relies on edge
weights being distinct in two ways:
● Assumes there is a unique MST in the

graph.
● Assumes swapping one edge crossing the cut

for another strictly improves the cost of an
alleged MST.

● Neither of these are true if weights can
be duplicated.

● How do we account for this?

Exchange Arguments

● A more general version of an exchange
argument is as follows.
● Let X be the object produced by a greedy

algorithm and X* be any optimal solution.
● If X = X*, the algorithm is optimal.
● Otherwise, show that you can exchange some

piece of X* for some piece of X without
deteriorating the quality of X*.

● Argue that this process can be iterated
repeatedly to turn X* into X without changing
its cost.

● Conclude that X is optimal.

Theorem: If G is a connected, weighted graph, Prim's algorithm
correctly finds an MST in G.

Proof: Let T be the spanning tree found by Prim's algorithm and
T* be any MST of G. We will prove c(T) = c(T*). If T = T*,
then c(T) = c(T*) and we are done.

Otherwise, T ≠ T*, so we have T – T* ≠ Ø. Let (u, v) be any
edge in T – T*. When (u, v) was added to T, it was a least-
cost edge crossing some cut (S, V – S). Since T* is an MST,
there must be a path from u to v in T*. This path begins in S
and ends in V – S, so there must be some edge (x, y) along
that path where x ∈ S and y ∈ V – S. Since (u, v) is a
least-cost edge crossing (S, V – S), we have c(u, v) ≤ c(x, y).

Let T*' = T* ∪ {(u, v)} – {(x, y)}. Since (x, y) is on the cycle
formed by adding (u, v), this means T*' is a spanning tree.
Notice c(T*') = c(T*) + c(u, v) – c(x, y) ≤ c(T*). Since T* is an
MST, this means c(T*') ≥ c(T*), so c(T*) = c(T*').

Note that |T – T*'| = |T – T*| – 1. Therefore, if we repeat this
process once for each edge in T – T*, we will have converted
T* into T while preserving c(T*). Thus c(T) = c(T*). ■

A Note on the Proof

● Our proof worked as follows:
● Find a way to replace one piece of T* with one

piece of T without increasing c(T*).
● Note that this makes T* “less different” than T as

before.
● Conclude that we could iterate this process until

eventually T* became T, at which point we have
c(T) = c(T*).

● This is inherently an inductive argument, but
typically it is not presented as such.
● It's fine to say “repeat this process” rather than

writing out a base case and inductive step.

Next Time

● Kruskal's Algorithm
● Disjoint-Set Forests

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

